Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bên nhau trọn đời
Xem chi tiết
Yến Nguyễn
Xem chi tiết
Nguyễn Quang Ngọc Trác
12 tháng 3 2018 lúc 5:40

Ta có:

a/b = c/d => 2018a/2018b = 2018c/2018d = 2018a - 2018c / 2018b- 2018d

a/b = c/d => 2017a/2017b = 2017c/2017d =2017a+ 2017c/ 2017b+ 2017d

=> 2018a-2018c/2018b-2018d = 2017a+2017c/2017b+2017d (=a/b=c/d)

Linh Chi
Xem chi tiết
Tuyển Nguyễn Đình
Xem chi tiết
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 12 2021 lúc 15:55

Sửa đề: \(\dfrac{2018a-2019b}{2019a+2020b}=\dfrac{2018c-2019d}{2019c+2020d}\)

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2020a}{2020b}=\dfrac{2020c}{2020d}=\dfrac{2019a}{2019c}=\dfrac{2019b}{2019d}=\dfrac{2018a}{2018c}=\dfrac{2018b}{2018d}=\dfrac{2018a-2019b}{2018c-2019d}=\dfrac{2019a+2020b}{2019c+2020d}\\ \Leftrightarrow\dfrac{2018a-2019b}{2019a+2020b}=\dfrac{2018c-2019d}{2019c+2020d}\)

Tô Hà Thu
10 tháng 12 2021 lúc 15:56

\(\dfrac{2018a-2019b}{2019c-2020d}=\dfrac{2018c-2018c}{2019a+2020b}\)

Sao .... ;-; ;-; 

Lê Huy Nhật
10 tháng 12 2021 lúc 16:00

undefined

Xem chi tiết

2.

\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2a+2b+2c+2d}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)

\(\Rightarrow a=\frac{2b}{2}=b;b=\frac{2c}{2}=c;c=\frac{2d}{2}=d;d=\frac{2a}{2}=a\)

\(\Rightarrow a=b=c=d\)

Ta có : \(A=\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}\)

\(=\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}\)

\(=\frac{4a}{2a}=2\)

3.

\(\left(x-1\right)\left(x-3\right)< 0\)

\(\Rightarrow\hept{\begin{cases}x-1< 0\\x-3>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1>0\\x-3< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x< 1\\x>3\end{cases}}\)( loại ) hoặc \(\hept{\begin{cases}x>1\\x< 3\end{cases}}\)

Vậy \(1< x< 3\)

Khách vãng lai đã xóa

Đặt \(A=\frac{1}{4\times9}+\frac{1}{9\times14}+\frac{1}{14\times19}+...+\frac{1}{44\times49}\)

Ta có : \(5\times A=\frac{5}{4\times9}+\frac{5}{9\times14}+\frac{5}{14\times19}+...+\frac{5}{44\times49}=\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{44}-\frac{1}{49}=\frac{1}{4}-\frac{1}{49}\)

\(=\frac{49}{196}-\frac{4}{196}=\frac{45}{196}\)

\(\Rightarrow A=\frac{9}{196}\)

Đặt \(B=1-3-5-7-...-49=1-\left(3+5+...+49\right)\)

Đặt \(C=3+5+...+49\) ( khoảng cách là 2 )

Số số hạng là : \(\left(49-3\right):2+1=24\)

Tổng C là : \(\left(49+3\right)\times24:2=624\)

\(\Rightarrow B=1-264=-623\)

Vậy \(A=\frac{9}{196}\times\frac{-623}{89}=\frac{-9}{28}\)

Dòng cuối cùng mình không chắc là đúng nhé !

Khách vãng lai đã xóa
Hoàng hôn  ( Cool Team )
10 tháng 11 2019 lúc 15:39

\(\left(x-1\right)\left(x-3\right)< 0\)

=> x-1 và x-3 trái dấu

mà x-1>x-3 nên ta có:

\(\hept{\begin{cases}x-1>0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 3\end{cases}\Rightarrow}-1< x< 3}\)

\(\Rightarrow x\in\left\{-2;-1;0;1;2\right\}\)

vậy x \(\in\left\{-2;-1;0;1;2\right\}\)

Khách vãng lai đã xóa
Tran Thi Minh Nguyet
Xem chi tiết
Nguyễn Hoàng Hiếu Anh
Xem chi tiết

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{a+b+c+d}=1\left(\text{ vì a+b+c+d khác 0}\right)\)

\(\Rightarrow a=b=c=d\)

\(M=\frac{2a-b}{c+b}+\frac{2b-c}{a+d}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-a}{a+a}+\frac{2b-b}{b+b}+\frac{2c-c}{c+c}+\frac{2d-d}{d+d}=\frac{1}{2}.4=2\)

Hatake Kakashi
Xem chi tiết
Đức Trung Đoàn
4 tháng 11 2018 lúc 20:31

BhregvftevuyfvgfwygfyfwRrwWUwwefferewgfgugrgidmmcjfkdmekeodkkwmek=1029848483388882888388

chu thị mai
4 tháng 11 2018 lúc 20:34

dux trung doan ĐÃ GIÚP THÌ TỬ TẾ VÀO

Nguyệt
4 tháng 11 2018 lúc 20:58

ta xét 2 trường hợp 

th1:a+b+c+d khác 0

\(\frac{2018a+b+c+d}{a}=\frac{a+2018b+c+d}{b}\)

\(=\frac{2018c+a+b+d}{c}=\frac{2018d+a+b+c}{d}\)

\(2017+\frac{a+b+c+d}{a}=2017+\frac{a+b+c+d}{b}\)

\(=2017+\frac{a+b+c+d}{c}=2017+\frac{a+b+c+d}{d}\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

\(\Rightarrow a=b=c=d\)

thay vào bt M ta có

\(M=\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+d}{c+d}+\frac{d+a}{b+c}=1.4=4\)

Th2: a+b+c+d=0

=> a+b=-(c+d)

b+c=-(a+d)

thay vào bt m ta có
\(M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(d+a\right)}{d+a}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}=\left(-1\right).4=-4\)