Cho a/b=b/c=c/d=d/a,(a+b+c+d khac 0)
Tinh M=2019a-2018b/a+b=2018c-2017d/c+d
\(Cho:\frac{a}{2b}+\frac{b}{2c}+\frac{c}{2d}+\frac{d}{2a}\)\(\left(a,b,c,d>0\right)\)Tính:\(\frac{2019a-2018b}{c+d}+\frac{2019b-2018c}{a+d}+\frac{2019c-2018d}{a+b}+\frac{2019d-2018a}{c+b}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)
cm:\(\dfrac{2018a-2018c}{2018b-2018c}=\dfrac{2017a+2017c}{2017b+2017d}\)
Ta có:
a/b = c/d => 2018a/2018b = 2018c/2018d = 2018a - 2018c / 2018b- 2018d
a/b = c/d => 2017a/2017b = 2017c/2017d =2017a+ 2017c/ 2017b+ 2017d
=> 2018a-2018c/2018b-2018d = 2017a+2017c/2017b+2017d (=a/b=c/d)
cho a/b= c/d (b,c,d khac 0; c-2d khac 0) CMR :(a-2b)^4/(c-2d)^4=a^4+2017b^4/c^4+2017d^4
Cho:\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}\)(a,b,c,d > 0)tính giá trị của biểu thức P=\(\dfrac{2018a-2017b}{c+d}+\dfrac{2018b-2017}{a+d}+\dfrac{2018c-2017a}{b+c}+\dfrac{2018d-2017a}{b+c}\)
cho \(\dfrac{a}{b}=\dfrac{c}{d}\)Chứng minh rằng
\(\dfrac{2018a-2019b}{2019c+2020d}\)=\(\dfrac{2018c-2018c}{2019a+2020b}\)
Sửa đề: \(\dfrac{2018a-2019b}{2019a+2020b}=\dfrac{2018c-2019d}{2019c+2020d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2020a}{2020b}=\dfrac{2020c}{2020d}=\dfrac{2019a}{2019c}=\dfrac{2019b}{2019d}=\dfrac{2018a}{2018c}=\dfrac{2018b}{2018d}=\dfrac{2018a-2019b}{2018c-2019d}=\dfrac{2019a+2020b}{2019c+2020d}\\ \Leftrightarrow\dfrac{2018a-2019b}{2019a+2020b}=\dfrac{2018c-2019d}{2019c+2020d}\)
\(\dfrac{2018a-2019b}{2019c-2020d}=\dfrac{2018c-2018c}{2019a+2020b}\)
Sao .... ;-; ;-;
1.Tính:
\(\left(\frac{1}{4\times9}+\frac{1}{9\times14}+\frac{1}{14\times19}+...+\frac{1}{44\times49}\right)\times\frac{1-3-5-7-...-49}{89}\)
2.Cho \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\). Tính: \(A=\frac{2019a-2018b}{c+d}+\frac{2019b-2018c}{a+d}+\frac{2019c-2018d}{a+b}+\frac{2019d-2018a}{b+c}\)
3.Tìm x biết:\(\left(x-1\right)\left(x-3\right)< 0\)
2.
\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2a+2b+2c+2d}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)
\(\Rightarrow a=\frac{2b}{2}=b;b=\frac{2c}{2}=c;c=\frac{2d}{2}=d;d=\frac{2a}{2}=a\)
\(\Rightarrow a=b=c=d\)
Ta có : \(A=\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}\)
\(=\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}\)
\(=\frac{4a}{2a}=2\)
3.
\(\left(x-1\right)\left(x-3\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-1< 0\\x-3>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1>0\\x-3< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 1\\x>3\end{cases}}\)( loại ) hoặc \(\hept{\begin{cases}x>1\\x< 3\end{cases}}\)
Vậy \(1< x< 3\)
Đặt \(A=\frac{1}{4\times9}+\frac{1}{9\times14}+\frac{1}{14\times19}+...+\frac{1}{44\times49}\)
Ta có : \(5\times A=\frac{5}{4\times9}+\frac{5}{9\times14}+\frac{5}{14\times19}+...+\frac{5}{44\times49}=\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{44}-\frac{1}{49}=\frac{1}{4}-\frac{1}{49}\)
\(=\frac{49}{196}-\frac{4}{196}=\frac{45}{196}\)
\(\Rightarrow A=\frac{9}{196}\)
Đặt \(B=1-3-5-7-...-49=1-\left(3+5+...+49\right)\)
Đặt \(C=3+5+...+49\) ( khoảng cách là 2 )
Số số hạng là : \(\left(49-3\right):2+1=24\)
Tổng C là : \(\left(49+3\right)\times24:2=624\)
\(\Rightarrow B=1-264=-623\)
Vậy \(A=\frac{9}{196}\times\frac{-623}{89}=\frac{-9}{28}\)
Dòng cuối cùng mình không chắc là đúng nhé !
\(\left(x-1\right)\left(x-3\right)< 0\)
=> x-1 và x-3 trái dấu
mà x-1>x-3 nên ta có:
\(\hept{\begin{cases}x-1>0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 3\end{cases}\Rightarrow}-1< x< 3}\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2\right\}\)
vậy x \(\in\left\{-2;-1;0;1;2\right\}\)
Cho \(\frac{a}{b}=\frac{c}{d}\)(a, b, c khác 0)
CM:\(\frac{a^2+b^2}{b^2+c^2}=\frac{\left(a+2018b\right)^2}{\left(b+2018c\right)^2}\)
cho a/b=b/c=c/d=d/a va a+b+c khac 0.
Tinh M = 2a-b/c+d + 2b-c/a+d + 2c-d/a+b + 2d-a/b+c
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{a+b+c+d}=1\left(\text{ vì a+b+c+d khác 0}\right)\)
\(\Rightarrow a=b=c=d\)
\(M=\frac{2a-b}{c+b}+\frac{2b-c}{a+d}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-a}{a+a}+\frac{2b-b}{b+b}+\frac{2c-c}{c+c}+\frac{2d-d}{d+d}=\frac{1}{2}.4=2\)
Cho dãy tỉ số bằng nhau
\(\frac{2018a+b+c+d}{a}\) = \(\frac{a+2018b+c+d}{b}\)= \(\frac{a+b+2018c+d}{c}\)= \(\frac{a+b+c+2018d}{d}\)
Tính M = \(\frac{a+b}{c+d}\)+ \(\frac{b+c}{d+a}\)+ \(\frac{c+d}{a+b}\)+ \(\frac{d+a}{b+c}\)
BhregvftevuyfvgfwygfyfwRrwWUwwefferewgfgugrgidmmcjfkdmekeodkkwmek=1029848483388882888388
ta xét 2 trường hợp
th1:a+b+c+d khác 0
\(\frac{2018a+b+c+d}{a}=\frac{a+2018b+c+d}{b}\)
\(=\frac{2018c+a+b+d}{c}=\frac{2018d+a+b+c}{d}\)
\(2017+\frac{a+b+c+d}{a}=2017+\frac{a+b+c+d}{b}\)
\(=2017+\frac{a+b+c+d}{c}=2017+\frac{a+b+c+d}{d}\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
\(\Rightarrow a=b=c=d\)
thay vào bt M ta có
\(M=\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+d}{c+d}+\frac{d+a}{b+c}=1.4=4\)
Th2: a+b+c+d=0
=> a+b=-(c+d)
b+c=-(a+d)
thay vào bt m ta có
\(M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(d+a\right)}{d+a}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}=\left(-1\right).4=-4\)