Chứng minh rằng:
A= 10n + 18.n-1 chia hết cho 27 ( với n là số tự nhiên tùy ý)
1/Tìm số tự nhiên a nhỏ nhất.Biết rằng khi chia a cho 17 thì được số dư là 8.Còn khi chia a cho 25 thì được số dư là 16.
2/Chứng minh rằng:A=10n+18.n-1 chia hết cho 27 (với n là số thứ nhiên tùy ý)
1/
Gọi số cần tìm là a
Ta có :
a : 17 dư 8
=> a - 8 chia hết cho 17
=> a + 17 - 8 chia hết cho 17
=> a + 9 chia hết cho 17
a : 25 dư 16
=> a - 16 chia hết cho 25
=> a + 25 - 16 chia hết cho 25
=> a + 9 chia hết cho 25
=> a + 9 thuộc BC ( 17 ; 25 )
Ta có :
17 = 17
25 = 52
=> BCNN ( 17 ; 25 ) = 17 . 52 = 425
=> BC ( 17 ; 25 ) = B ( 425 ) =
=> a + 9 = B ( 425 ) = { 0 ; 425 ; 950 ; 1375 ; .... }
=> a = { -9 ; 416 ; 941 ; 1366 ; .... }
Mà a là số tự nhiên nhỏ nhất
=> a = 416
Vậy số cần tìm là 416
2, Câu hỏi của Dương Đình Hưởng - Toán lớp 6 - Học toán với OnlineMath
Ta có :
10n + 18n - 1 = ( 10n - 1 ) + 18n = 999...9 + 18n ( số 999...9 có n chữ số 9 )
= 9 . ( 111...1 + 2n ) ( số 111...1 có n chữ số 1 )
= 9 . A
Xét biểu thức trong ngoặc :
A = 111...1 + 2n = 111...1 - n + 3n ( số 111...1 có n chữ số 1 )
Ta đã biết 1 số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3
Số 111...1 ( n chữ số 1 ) có tổng các chữ số là : 1 + 1 + 1 + ... + 1 = n ( vì có n chữ số 1 )
=> 111...1 ( n chữ số 1 ) và n có cùng số dư trong phép chia cho 3
=> 111...1 ( n chữ số 1 ) - n chia hết cho 3
=> A chia hết cho 3
=> 9 . A chia hết cho 27
Hay 10n + 18n - 1 chia hết cho 27 ( đpcm )
Chứng minh rằng A 10n 18.n 1 chia hết cho 27 với n là số tự nhiên
Chứng minh rằng số A=10n+18.n-1 chia hết cho 27(với n là số tự nhiên tùy ý)
Giúp đi cần gấp
Câu hỏi của Dương Đình Hưởng - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo link trên.
Chứng minh số A =10 ^n + 18.n -1 chia hết cho 27(với n là số tự nhiên tùy ý)
các bạn giải giúp mình nha ghi đầy đủ ra nhé
b1
a) tìm các số tự nhiên a,biết rằng a chia hết cho 9 và 105<a<120
b) tìm các số tự nhiên b ,biết rằng b chia hết cho 2 và 5 và 93<b<111
b2
số tự nhiên a chia hết cho số tự nhiên được thương là 12 dư 4 hỏi số a có chia hết cho 6 ko? vì sao
b3
tỉm số tự nhiên a nhỏ nhất biết rằng khi chia a cho 17 thì dư 8 chia cho 25 dư 16
chứng minh rằng số a=10n +18.n-1 chia hết cho 27 (với n là số tự nhiên tùy ý)
Bài 1: a) => tập hợp a = { 108;117 }
b) => tập hợp b = { 90;100;110 }
Chứng minh rằng:
a) ( n^5 - n) chia hết cho 30
b) ( n^4 - 10n^2 + 9) chia hết cho 384(n lẻ thuộc Z)
c) ( 10^n + 18n - 28) chia hết cho 27 ( n thuộc N)
Chứng minh rằng:
a) ( n^5 - n) chia hết cho 30
b) ( n^4 - 10n^2 + 9) chia hết cho 384(n lẻ thuộc Z)
c) ( 10^n + 18n - 28) chia hết cho 27 ( n thuộc N)
Chứng minh rằng: B = 10n + 72n – 1 chia hết cho 81 với n là số tự nhiên
Ta Có:
Cho biểu thức trên là B
\(b\)\(=\)\(10\)\(^n\)+ \(72n\)\(-1\)
\(=10\)\(^n\)\(+72n\)\(-1\)
\(=10^{n^{ }}\)\(-1\)(có n\(-1chữ\) số 9)=9\(x\)(11....1)(có n chữ số 1)
B= 10n-1+72n=9x(11....1)+72n
=>B:9=11....1+8n=11....1-n+9n
Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n
=>11....1-n chia hết cho 9
=>B:9=11....1-n+9n chia hết cho 9
Vậy B chia hết cho 81
Ta Có:
Cho biểu thức trên là B
bb==1010nn+ 72n72n−1−1
=10=10nn+72n+72n−1−1
=10n=10n−1−1(có n−1chữ−1chữ số 9)=9xx(11....1)(có n chữ số 1)
B= 10n-1+72n=9x(11....1)+72n
=>B:9=11....1+8n=11....1-n+9n
Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n
=>11....1-n chia hết cho 9
=>B:9=11....1-n+9n chia hết cho 9
Vậy B chia hết cho 81
Chứng minh rằng:A =10n +18n-1 chia hết cho 81(n là số tự nhiên chia hết cho 3)