Những câu hỏi liên quan
Kyotaka Ayanokouji
Xem chi tiết
HD Film
25 tháng 10 2019 lúc 21:06

\(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge2\sqrt{\frac{a^2}{a^2}}+2\sqrt{\frac{b^2}{b^2}}+2\sqrt{\frac{c^2}{c^2}}=6\)

Dấu = xảy ra khi a^4=b^4=c^4=1 <=> \(a=\pm1;b=\pm1;c\pm1\)

-> B = 3

Khách vãng lai đã xóa
Khánh Ngọc
Xem chi tiết
Đặng Ngọc Quỳnh
26 tháng 12 2020 lúc 20:50

Xét \(A=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)

\(=a.\frac{a}{b+c}+b.\frac{b}{c+a}+c.\frac{c}{a+b}\)

\(=a.\left(\frac{a}{b+c}+1-1\right)+b.\left(\frac{b}{c+a}+1-1\right)+c.\left(\frac{c}{a+b}+1-1\right)\)

\(=a.\frac{a+b+c}{b+c}-a+b.\frac{a+b+c}{c+a}-b+c.\frac{a+b+c}{a+b}-c\)

\(=\left(a+b+c\right).\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(a+b+c\right)\)

\(=\left(a+b+c\right).2020-\left(a+b+c\right)\)

\(\Rightarrow P=\frac{A}{a+b+c}=\frac{\left(a+b+c\right).2019}{a+b+c}=2019\)

Vậy...

Khách vãng lai đã xóa
Trương Cao Phong
Xem chi tiết
Tranh Diệp Phi
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Kiệt Nguyễn
25 tháng 10 2020 lúc 15:46

Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{​​}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))

Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị

Khách vãng lai đã xóa
Kiệt Nguyễn
26 tháng 10 2020 lúc 11:44

Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)

Khi đó  \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)

Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)

Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)

Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)

Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))

Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1

Khách vãng lai đã xóa
Hà Gia Khang
25 tháng 4 2023 lúc 9:30

3. Áp dụng cô si ta có 

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c=1\)

Lại có:

 \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)

⇒ P ≥ \(2020.1+1=2021\)

Vậy Pmin = 2021 khi và chỉ khi a = b = c =1/3

Phạm Phương Linh
Xem chi tiết
Hoán Lê
15 tháng 3 lúc 19:58

gọi a/2019=b/2020=c/2021 là x

\(\Rightarrow\)a=2019*x ;b=2020*x;c=2021*x

\(\Rightarrow\)M=4*(2019*x-2020*x)*(2020-2021)-(2021*x-2019*x)^2

\(\Rightarrow\)M=4*(-x)*(-x)-(2x)^2

\(\Rightarrow\)M=4*x^2-4*x^2

⇒M=0

Phan Nghĩa
Xem chi tiết
Xyz OLM
25 tháng 8 2020 lúc 8:41

Ta có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=36\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=36\)

 \(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=12\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

\(\Rightarrow\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}=\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)

=> \(\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}-\frac{2}{ab}-\frac{2}{bc}-\frac{2}{ca}=0\)

=> \(\left(\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\right)+\left(\frac{1}{b^2}-\frac{2}{bc}+\frac{1}{c^2}\right)+\left(\frac{1}{c^2}-\frac{2}{ac}+\frac{1}{a^2}\right)=0\)

=> \(\left(\frac{1}{a}-\frac{1}{b}\right)^2+\left(\frac{1}{b}-\frac{1}{c}\right)^2+\left(\frac{1}{c}-\frac{1}{a}\right)^2=0\)

=> \(\hept{\begin{cases}\frac{1}{a}-\frac{1}{b}=0\\\frac{1}{b}-\frac{1}{c}=0\\\frac{1}{c}-\frac{1}{a}=0\end{cases}}\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

Khi đó \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Leftrightarrow3\frac{1}{a}=6\Rightarrow\frac{1}{a}=2\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=2\)

Khi đó  Đặt P = \(\left(\frac{1}{a}-3\right)^{2020}+\left(\frac{1}{b}-3\right)^{2020}+\left(\frac{1}{c}-3\right)^{2020}\)

= (2 - 3)2020 + (2 - 3)2020 + (2 - 3)2020

= 1 + 1 + 1 = 3

Vậy P = 3 

Khách vãng lai đã xóa
Princess U
Xem chi tiết
Nguyễn Ngọc Anh
Xem chi tiết
Upin & Ipin
19 tháng 8 2020 lúc 16:39

a)

\(P=a\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}+\frac{a}{b}=a\sqrt{\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}}+\frac{a}{a+1}\)

      =\(a\sqrt{\frac{a^2\left(a+1\right)^2+2a\left(a+1\right)+1}{a^2\left(a+1\right)^2}}+\frac{a}{a+1}=a\sqrt{\frac{\left[a\left(a+1\right)+1\right]^2}{\left[a\left(a+1\right)\right]^2}}+\frac{a}{a+1}\)

      \(=a.\frac{a\left(a+1\right)+1}{a\left(a+1\right)}+\frac{a}{a+1}=a+\frac{1}{a+1}+\frac{a}{a+1}=a+1\)

Vay P=a+1

phan b,c ap dung phan a la ra

Khách vãng lai đã xóa
Nguyễn Minh Đăng
8 tháng 10 2020 lúc 13:17

CM bài toán phụ: \(x+y+z=0\) 

CM: \(I=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) với x,y,z dương

Ta có: \(I=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}\)

\(=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\cdot\frac{x+y+z}{xyz}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Áp dụng vào ta được: \(Q=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2020}-\frac{1}{2021}\)

\(Q=2021-\frac{1}{2021}=...\)

Khách vãng lai đã xóa
Nguyễn Minh Đăng
8 tháng 10 2020 lúc 13:18

Phần b mượn bài Upin ta có:

\(P=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)

\(P=2020+1\)

\(P=2021\)

Khách vãng lai đã xóa