Tìm GTNN của A=\(x^4-4x+2019\)
Tìm GTNN của D= x4-4x+2019
\(D=x^2-4x+4+2015=\left(x-2\right)^2+2015\ge2015\)
Dấu = xảy ra khi x-2=0
=> x=2
Vậy Min D=2015 <=> x=2
Tìm GTNN của biểu thức:
A=2019-|x-y|^2018-|2x+1|-|4x-2|
tìm gtnn của A=|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+2019
+) Xét Ix-1I + Ix-5I
Áp dụng BĐT: \(|a|+|b|\)\(\ge\)\(|a-b|\),ta có:
\(|x-1|+|x-5|\ge|x-1-x+5|=4\)
Dấu "=" xảy ra khi (x-1)(x-5) \(\le\)0
+) Xét Ix-2I + Ix-4I
Áp dụng BĐT: \(|a|+|b|\)\(\ge\)\(|a-b|\),ta có:
\(|x-2|+|x-4|\ge|x-2-x+4|=2\)
Dấu "=" xảy ra khi (x-2)(x-4) \(\le\)0
+) Xét Ix-3I
Vì Ix-3I\(\ge\)0
Dấu "=' xảy ra khi x-3=0 hay x=3
Suy ra: A = Ix-1I + Ix-2I + Ix-3I + Ix-4I + Ix-5I + 2019 \(\ge\)4+2+0+2019 = 2025
Dấu"=" xảy ra khi x=3
Vậy gtnn của A là 2025 tại x=3
khi làm bài dạng này cần xét từng cặp có độ "chênh đơn vị" nhỏ dần,rồi đến cái cuối cùng xét riêng nó lấy x,đó là gt đúng của x
Phải là Bất đẳng thức : \(|a|+|b|\ge|a+b|\) chứ
a) Tìm GTNN của biểu thức A = x − 2018 + − 100 + x − 2019
b) Tìm GTLN của biểu thức B = 4 − 5 x − 2 − 3 y + 12
Tìm GTNN:
A=\(2\cdot|X-\frac{1}{2}|-2019\)
B=\(4\cdot|3X-2|+3|4X+1|-\frac{1}{3}\)
\(A=2.\left|x-\frac{1}{2}\right|-2019\)
Vì \(\left|x-\frac{1}{2}\right|\ge0,\forall x\)
\(\Rightarrow2.\left|x-\frac{1}{2}\right|\ge0,\forall x\)
\(\Rightarrow2.\left|x-\frac{1}{2}\right|-2019\ge-2019,\forall x\)
Dấu \("="\)xảy ra
\(\Leftrightarrow\left|x-\frac{1}{2}\right|=0\)
\(x-\frac{1}{2}=0\)
\(x=0+\frac{1}{2}\)
\(x=\frac{1}{2}\)
Vậy \(A_{min}=-2019\Leftrightarrow x=\frac{1}{2}\)
\(A=2.\left|x-\frac{1}{2}\right|-2019\)
Ta có : \(2.\left|x-\frac{1}{2}\right|\ge0\forall x\)
\(\Rightarrow2\left|x-\frac{1}{2}\right|-2019\ge-2019\)
Dấu "=" xảy ra \(\Leftrightarrow2.\left|x-\frac{1}{2}\right|=0\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy : \(A_{min}=-2019\) tại \(x=\frac{1}{2}\)
\(B=4\left|3x-2\right|+3\left|4x+1\right|-\frac{1}{3}\)
Ta có : \(4\left|3x-2\right|\ge0\forall x,3\left|4x+1\right|\ge0\forall x\)
\(\Rightarrow4\left|3x-2\right|+3\left|4x+1\right|\ge0\forall x\)
\(\Rightarrow4\left|3x-2\right|+3\left|4x+1\right|-\frac{1}{3}\ge-\frac{1}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-2=0\\4x+1=0\end{cases}}\)
...
Tìm GTNN của:
a/ A = |x - 2| + |x - 4| + 2017
b/ B = |2019 - x| + |2020 - x|
Ta có:
a) A = |x - 2| + |x - 4| + 2017|
=> A = |x - 2| + |4 - x| + 2017 \(\ge\)|x - 2 + 4 - x| + 2017 = |2| + 2017=2019
Dấu "=" xảy ra <=> (x - 2)(4 - x) \(\ge\)0
<=> 2 \(\le\)x \(\le\)4
Vậy MinA = 2019 <=> 2 \(\le\)x \(\)4
b) Ta có: B = |2019 - x| + |2020 - x|
=> B = |x - 2019| + |2020 - x| \(\ge\)|x - 2019 + 2020 - x| = |1| = 1
Dấu "=" xảy ra <=> (x - 2019)(2020 - x) \(\ge\)0
<=> 2019 \(\le\)x \(\le\)2020
Vậy MinB = 1 <=> 2019 \(\le\)x \(\le\)2020
ta có
/x-2/> hoặc= x-2
/x-4/= /4-x/> hoặc=4-x
=> /x-2/+/x-4/+2017> hoặc= (x-2)+(4-x)+2017=2019
hay A> hoặc= 2019
=> GTNN của A là 2019
b,
Vì /2019-x/ > hoặc= 2019-x
/2020-x/=/x-2020/> hoặc=x-2020
=>/2019-x/+/2020-x/>hoặc=(2019-x)+(x-2020)=-1
Hay B> hoặc=-1
=>B=1
1. tìm GTNN của A= x(x+2)(x+4)(x+6)+8
2. tìm GTLN của B=5+(1-x)(x+2)(x+3)(x+6)3
3.tìm GTNN của C=(x+3)4 + (x-7)4
4. Cho x>0. Tìm GTNN của P=\(\dfrac{4x^2+1}{2x}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
3.
Đặt $x+3=a; 7-x=b$ thì $a+b=10$
$C=a^4+b^4$
Áp dụng BĐT Bunhiacopxky:
$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$
$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$
$\Rightarrow a^2+b^2\geq 50$
$\Rightarrow C\geq \frac{50^2}{2}=1250$
Vậy $C_{\min}=1250$
Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$
Tìm gtnn
4x^2+2y^2+4xy-4x-6y+2019
\(\frac{-3}{x^2-6x+10}\)
1,
4x2+2y2+4xy-4x-6y+2019
=4x2+(4xy-4x)+(y2-2y+1)+(y2-4y+4)+2014
=4x2+2.2x(y-1)+(y-1)+(y-2)2+2014
=(2x+y-1)2+(y-2)2+2014>=2014
vì (2x+y-1)2 >=0 với mọi x,y
(y-2)2 >=0 với mọi y
dấu "=" xảy ra khi y-2=0 suy ra y=2
và 2x+y-1=0 suy ra x=-1/2
vậy 4x4+2y2+4xy -4x-6y+2019 min =2014 khi và chỉ khi x=-1/2,y=2
2,
ta có x2-6x+10=(x-3)2+1>=1
vì (x-3)2>=0 với mọi x
=> 1/x2-6x+10<=1(theo tính chất thì với a>=b thì 1/a<=1/b với a,b cùng dấu)
=> -3/x2-6x+10>=-3
dấu "="xảy ra khi x-3=0 =>x=3
vậy -3/x2-6x+10 min=-3 <=>x=3
1.Tìm x: |4-2x|+|x-2|=2-x
2.Tìm GTNN của biểu thức: A=|x-1|+|x-2|+|x-2019|-1