Tim x,y thoa man
x^2+y^2=3-xy
tim so nguyen x thoa man
x/6=-1/2
\(\dfrac{x}{6}=-\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{6}{-2}=-3\)
`x/6=(-1)/2`
`=>x/6=(-3)/6`
`=>x=-3`
Vậy `x=-3`
\(\dfrac{x}{6}\)=\(\dfrac{-1}{2}\)⇒\(x.2=-6\)⇒\(x=-3\)
a)Tim cap (x,y) nguyen duong thoa man xy=3(y-x)
b)cho 2 so x,y >0 thoa man x+y = 1
Tim GTNN cua M=(x^2+1/y^2)(y^2+1/x^2)
mình biết làm nhưng dài quá bạn tra trên google là đc
tìm xy nguyen biet (x+y-2)^2+(y+3)^2=0 tim xy thoa man x^2-6x+10=1/|x-3|+1
tim x,y thuoc z thoa x^2+xy+y^2=x^2y^2
tim tat ca cac so nguyen x,y thoa man x^3+x^2+2-2y=xy
tim cac cap so nguyen x , y thoa man : 2 . ( xy - 3 ) = x
\(2\left(xy-3\right)=x\)
\(\Leftrightarrow2xy-6=x\)
\(\Leftrightarrow2xy-x=0+6\)
\(\Leftrightarrow x\left(2y-1\right)=6\)
\(\Rightarrow x\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Rightarrow y\in\left\{....\right\}\)
cho x,y,z la cac so thuc duong thoa man x+y+z=1 tim min A=x^3/(x^2+xy+y^2)+y^3/(y^2+yz+z^2)+z^3/(z^2+zx+x^2)
Tim x,y thoa man phuong trinh xy-x-y=2
xy-x-y=2
=> x.(y-1)-y=2
=>x.(y-1)-(y-1)=3
=>(x-1)(y-1)=3
=> x-1 và y-1 thuộc Ư(3)
Ư(3)={-3;-1;1;3}
Ta có bảng
y-1 | 1 | 3 | -1 | -3 |
y | 2 | 4 | 0 | -2 |
x-1 | 3 | 1 | -3 | -1 |
x | 4 | 2 | -2 | 0 |
tim cap so nguyen (x,y) thoa man: x+y+xy=2