TÌM x,y,z biết
7x.12y-1.13z2=784
Tìm x,y,z biết
1 .9x=12y=8z và x+y+z=46
2. 6x=4y=-2z và x-y-z=27
Tìm x,y,z biết
1 .9x=12y=8z và x+y+z=46
2. 6x=4y=-2z và x-y-z=27
Tìm x,y thuộc Z
6xy - 3x - 12y - 24 = 0
a) Tìm x, y, t ∈ Z, biết:
x 10 = 12 y = 63 210 = t - 80
tìm x,y,z biết: 9x=12y=4z và x-3y+4z=62
Ta có: 9x=12y=4z => \(\frac{9x}{36}\)=\(\frac{12y}{36}\)=\(\frac{4z}{36}\) => \(\frac{x}{4}\)= \(\frac{y}{3}\)=\(\frac{z}{9}\) => \(\frac{x}{4}\)=\(\frac{3y}{9}\)=\(\frac{4z}{36}\)
và x-3y+4z=62.
Áp dụng t/c của dãy tỉ số bằng nhau, ta có: \(\frac{x}{4}\)=\(\frac{3y}{9}\)=\(\frac{4z}{36}\)= \(\frac{x-3y+4z}{4-9+36}\)= \(\frac{62}{31}\)= 2
Do đó:
x=2.4=8
3y=2.9=18 => y=6
4z=2.36=72 => z=18.
Vậy x=8, y=6, z=18
~Hok tốt!~
Theo bài cho , ta có :
\(9x=12y=4z\)
\(\Rightarrow\frac{9x}{36}=\frac{12y}{36}=\frac{4z}{36}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)
\(\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\) và \(x-3y+4z=62\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(+)\frac{x}{4}=2\Rightarrow x=8\)
\(+)\frac{3y}{9}=2\Rightarrow3y=18\Rightarrow y=6\)
\(+)\frac{4z}{36}=2\Rightarrow4z=72\Rightarrow z=18\)
Vậy x = 8 , y = 6 và z = 18 .
Học tốt
\(\hept{\begin{cases}9x=12y=4z\\x-3y+4z=62\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{9}}=\frac{y}{\frac{1}{12}}=\frac{z}{\frac{1}{4}}\\x-3y+4z=62\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{9}}=\frac{3y}{\frac{1}{4}}=\frac{4z}{1}\\x-3y+4z=62\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{9}}=\frac{3y}{\frac{1}{4}}=\frac{4z}{1}=\frac{x-3y+4z}{\frac{1}{9}-\frac{1}{4}+1}=\frac{62}{\frac{31}{36}}=72\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{9}}=72\Rightarrow x=8\\\frac{y}{\frac{1}{12}}=72\Rightarrow y=6\\\frac{z}{\frac{1}{4}}=72\Rightarrow z=18\end{cases}}\)
Vậy x = 8 ; y = 6 ; z = 18
Tìm x,y,z biết:
3) 6x=10y=14z và x+y+z =50
4) 5x= 12y= 8z và x+y+z = 46
5) 6x= 4y=2z và x-y-z= 27
3)
\(6x=10y=14z\)
\(\Rightarrow\frac{6x}{210}=\frac{10y}{210}=\frac{14z}{210}\)
\(\Rightarrow\frac{x}{35}=\frac{y}{21}=\frac{z}{15}\)
Áp dụng tc chất của dãy tỉ số bằng nhau Ta có
\(\frac{x}{35}=\frac{y}{21}=\frac{z}{15}=\frac{x+y+z}{35+21+15}=\frac{50}{71}\)
\(\Rightarrow\begin{cases}x=\frac{1750}{71}\\y=\frac{1050}{71}\\z=\frac{650}{71}\end{cases}\)
4)
\(5x=12y=8z\)
\(\Rightarrow\frac{5x}{120}=\frac{12y}{120}=\frac{8z}{120}\)
\(\Rightarrow\frac{x}{24}=\frac{y}{10}=\frac{z}{15}\)
Áp dụng tc chất của dãy tỉ số bằng nhau Ta có
\(\frac{x}{24}=\frac{y}{10}=\frac{z}{15}=\frac{x+y+z}{24+10+15}=\frac{46}{49}\)
\(\Rightarrow\begin{cases}x=\frac{1196}{49}\\y=\frac{460}{49}\\z=\frac{690}{49}\end{cases}\)
5)
\(6x=4y=2z\)
\(\Rightarrow\frac{6x}{12}=\frac{4y}{12}=\frac{2z}{12}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)
Áp dụng tc chất của dãy tỉ số bằng nhau Ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x-y-z}{2-3-6}=\frac{27}{-7}\)
\(\Rightarrow\begin{cases}x=\frac{54}{-7}\\y=\frac{81}{-7}\\z=\frac{162}{-7}\end{cases}\)
Tìm x,y,z biết:
a) x2+4y2+z2=2x+12y-4z-14
b) x2+3y2+2z2-2x+12y+4z+15=0
Tìm x,y,z biết
1 .9x=12y=8z và x+y+z=46
2. 6x=4y=-2z và x-y-z=27
3. x=3y=2z và 2x-3y+4z
Tìm x, y, z thoả mãn x2+4y2+z2=2x+12y−4z−14
\(x^2+4y^2+z^2=2x+12y-4z-14\)
\(\Rightarrow x^2+4y^2+z^2-2x-12y+4z+14=0\)
\(\Rightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\)
\(\Rightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)
Ta có : \(\left(x-1\right)^2\ge0\Rightarrow x-1=0\Rightarrow x=1\)
\(\left(2y-3\right)^2\ge0\Rightarrow2y-3=0\Rightarrow2y=3\Rightarrow y=\frac{3}{2}\)
\(\left(z+2\right)^2\ge0\Rightarrow z+2=0\Rightarrow z=-2\)