Tìm số nguyên x để đa thức A(x)=2x^3-x^2-x+1 chia hết cho B(x)=x-2
cho 2 đa thức A(x) =2x^3-x^2-x+1 và B(x) =x-2
a) Tìm thương và số dư của phép chia đa thức A(x) chia hết cho (B)
b) tìm số nguyên x để A(x) chia hết B(x)
a) \(A\left(x\right)=2x^3-x^2-x+1\)
\(=\left(2x^3-4x^2\right)+\left(3x^2-6x\right)+\left(5x-10\right)+11\)
\(=\left(x-2\right).\left(2x^2+3x+5\right)+11\)
Vậy \(A\left(x\right):B\left(x\right)=2x^2+3x+5\) dư \(11\)
b) Để \(A\left(x\right)⋮B\left(x\right)\) thì \(11⋮B\left(x\right)\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\inơ\left\{13;3;2;-9\right\}\)
a)tìm số nguyên x để f(x)=x^2-5x+9 chi hết cho g(x)=x-3
b)tìm số nguyên x để f(x)=2x^3-x^2+6x+2 chia hết cho đa thức g(x)=2x-1
(a) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{x^2-5x+9}{x-3}\in Z\)
Ta có: \(\dfrac{x^2-5x+9}{x-3}\left(x\ne3\right)=\dfrac{x\left(x-3\right)-2\left(x-3\right)+3}{x-3}=x-2+\dfrac{3}{x-3}\)nguyên khi và chỉ khi: \(\left(x-3\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\\x-3=3\\x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\\x=6\\x=0\end{matrix}\right.\) (thỏa mãn).
Vậy: \(x\in\left\{0;2;4;6\right\}\).
(b) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{2x^3-x^2+6x+2}{2x-1}\in Z\left(x\ne\dfrac{1}{2}\right)\)
Ta có: \(\dfrac{2x^3-x^2+6x+2}{2x-1}=\dfrac{x^2\left(2x-1\right)+3\left(2x-1\right)+5}{2x-1}=x^2+3+\dfrac{5}{2x-1}\)
nguyên khi và chỉ khi: \(\left(2x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=1\\2x-1=-1\\2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\x=3\\x=-2\end{matrix}\right.\) (thỏa mãn).
Vậy: \(x\in\left\{-2;0;1;3\right\}\).
a: f(x) chia hết cho g(x)
=>x^2-3x-2x+6+3 chia hết cho x-3
=>3 chia hết cho x-3
=>x-3 thuộc {1;-1;3;-3}
=>x thuộc {4;2;6;0}
b: f(x) chia hết cho g(x)
=>2x^3-x^2+6x-3+5 chia hết cho 2x-1
=>5 chia hết cho 2x-1
=>2x-1 thuộc {1;-1;5;-5}
=>x thuộc {2;0;3;-2}
a). Tìm a để đa thức \(2x^3-x^2+4x+a\) chia hết cho đa thức \(x+2\)
b). Tìm số nguyên n để \(2n^2-n+2\) chia hết cho \(2n+1\)
c). Tìm giá trị nhỏ nhất của đa thức M = \(2x^2-8x-10\)
b: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
tìm các số nguyên a và b để đa thức x^3 +ax^2+bx +3 chia hết cho đa thức x^2 +2x-1
Ta có (x3 + ax2 + bx + 3) : (x2 - 2x - 1) = x + a - 2 dư x(b - 2a + 5) + a + 1
Để (x3 + ax2 + bx + 3) \(⋮\) (x2 - 2x - 1)
=> x(b - 2a + 5) + a + 1 = 0 \(\forall x\)
=> \(\hept{\begin{cases}b-2a+5=0\\a+1=0\end{cases}}\Rightarrow\hept{\begin{cases}b-2a=-5\\a=-1\end{cases}}\Rightarrow\hept{\begin{cases}b=-7\\a=-1\end{cases}}\)
bài 8 .a,Tìm a để đa thức A(x)=2x\(^2\) -\(7x^2+10x+a\) chia hết co đa thức B(x)=x-2
b,Tìm m để đa thức A(x)=2x\(^3\)-x+m chia hết cho đa thức B(x)=2x+1
a: =>2x^3-4x^2-3x^2+6x+4x-8+a+8 chia hết cho x-2
=>a+8=0
=>a=-8
b: =>2x^3+x^2-x^2-0,5x-0,5x+0,25+m-0,25 chia hết cho 2x+1
=>m-0,25=0
=>m=0,25
Bài 1:Tìm số a để đa thức
a)(2x^3-2x^2+a+x)chia hết cho(x+2)
b)(x^4-x^3+6x^2-x+a)chia hết cho(x^2-x+5)
Bài 2:Tìm giá trị nguyên của n để giá chị của biểu thức
a)(3n^3+10n^2-5)chia hết cho (3n+1)
b(2n^2+3n+3)chia hết cho(2n-1)
1) Cho đa thức A= x^4 - 2x^3 + 3x^2 - 5x + 10 và B= x^2 - x + 1. Tìm các đa thức Q và R sao cho A = BQ+R
2) Xác địng số dư khi chia đa thức f(x)= x^25 + x^20 + x^15 + x^30 + x^5 +1 cho
a. x-1
b. x+1
c. x^2-1
3) Tìm x nguyên sao cho giá trị biểu thức x^3 - 2x^2 + 2x chia hết cho x^2 - x +1
4) Xác định số a để
a.x^4 + ax^2 + 1 chia hết cho x^2 - 2x+1
b.2x^2 + ax + 5 chia x + 3 dư 41
Cho 2 đa thức :A=2x3 + x2 - x +3 và B=x2 + x
1)thực hiện phép chia A cho B
2)tìm số nguyên dương x để giá trị của đa thức A chia hết cho giá trị đa thức B
Bài 1 xác định các số hữu tỉ ab
a, 10x2 - 7x + a chia hết 2x-3
b, x2-8x+a chia hết x-1
c, 2x3-x2+ax+b chai hết x2-1
bài 2 : tìm số nguyên x để giá trị đa thức f(x) chia hết cho giá trị của đa thức g(x)
a, f(x)= 2x2-x+2 và g(x)=2x+1