Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minnie
Xem chi tiết
illumina
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 11 2023 lúc 21:44

a: Xét (O) có

CM,CA là tiếp tuyến

Do đó: CM=CA và OC là phân giác của \(\widehat{AOM}\)

=>\(\widehat{COM}=\dfrac{1}{2}\cdot\widehat{MOA}\)

Xét (O) có

DM,DB là tiếp tuyến

Do đó: DM=DB và OD là phân giác của \(\widehat{MOB}\)

=>\(\widehat{MOD}=\dfrac{1}{2}\cdot\widehat{MOB}\)

\(\widehat{COD}=\widehat{COM}+\widehat{DOM}\)

\(=\dfrac{1}{2}\cdot\widehat{MOA}+\dfrac{1}{2}\cdot\widehat{MOB}\)

\(=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

CD=CM+MD

mà CM=CA và DM=DB

nên CD=CA+DB

b: Xét ΔOCD vuông tại O có OM là đường cao

nên \(OM^2=CM\cdot MD\)

=>\(AC\cdot BD=R^2\) 

c: CM=CA

OM=OA

Do đó: CO là đường trung trực của AM

=>CO\(\perp\)AM tại E

DM=DB

OM=OB

Do đó: OD là đường trung trực của MB

=>OD\(\perp\)MB tại F

Xét tứ giác MEOF có

\(\widehat{MEO}=\widehat{MFO}=\widehat{FOE}=90^0\)

=>MEOF là hình chữ nhật

=>EF=OM=R

Trần Hoàng Anh
Xem chi tiết
Nguyễn Huỳnh Hải Đăng
Xem chi tiết
vũ quý
Xem chi tiết
Nguyễn Ngọc Anh Minh
20 tháng 10 2023 lúc 8:24

A B x y C D M O

a/

Xét tg vuông OAC và tg vuông OMC có

OA=OM=R

OC chung

=> tg OAC = tg OMC  (Hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)

\(\Rightarrow\widehat{AOC}=\widehat{MOC}=\dfrac{\widehat{AOM}}{2}\)

Tương tự ta cũng có

tg OBD = tg OMD \(\Rightarrow\widehat{BOD}=\widehat{MOD}=\dfrac{\widehat{BOM}}{2}\)

\(\Rightarrow\widehat{MOC}+\widehat{MOD}=\widehat{COD}=\dfrac{\widehat{AOM}}{2}+\dfrac{\widehat{BOM}}{2}=\dfrac{180^o}{2}=90^o\)

b/

AB+BD nhỏ nhất khi \(M\equiv B\)

Trang Nguyễn
Xem chi tiết
Diễm My
Xem chi tiết
nguyen van vu
Xem chi tiết
nguyen van vu
6 tháng 6 2016 lúc 20:51
Giúp mình đi mọi người
Cô Hoàng Huyền
7 tháng 6 2016 lúc 11:18

Cô hướng dẫn nhé nguyen van vu :)

K

a. Ta có góc COD = COM + MOD = \(\frac{AOM}{2}+\frac{BOM}{2}=\frac{180}{2}=90^o\)

b. Dễ thấy E là trung điểm CD, O là trung điểm AB nên OE song song AC. Vậy OE vuông góc AB.

c. Gọi MH là đường thẳng vuông góc AB, Ta chứng minh BC, AD đều cắt MH tại trung điểm của nó.

Gọi I là giao của AM và BD. Đầu tiên chứng minh ID = DB. Thật vậy, góc MID=IMD (Cùng bằng cung AM/2)

nên ID =MD, mà MD=DB nên ID=DB.

Gọi K là giao của MH và AD.

Theo Talet , \(\frac{MK}{DI}=\frac{AK}{AD}=\frac{KH}{BD}\Rightarrow MK=KH\)

Tương tự giao điểm của BC với MH cũng là trung điểm MH.

Tóm lại N trùng K hay MN vuông góc AB.

Lê Yến Nhi
Xem chi tiết