cho \(\frac{a}{c}=\frac{c}{b}\).CMR\(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
Giúp vs mình đang cần gấp
BÀI 1: Cho \(ac=b^2;bd=c^2\)
CMR: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
BÀI 2: Cho \(\frac{2a+b+c}{a}=\frac{a+2b+c}{b}=\frac{a+b+2c}{c}\)
Tính N= \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
GIÚP MÌNH VS!!!! ĐANG CẦN GẤP
BÀI 2: Áp dụng tc của dãy tỉ số bằng nhau, ta có:
\(\frac{2a+b+c}{a}=\frac{a+2b+c}{b}=\frac{a+b+2c}{c}=\frac{4a+4b+4c}{a+b+c}=4\)
\(\Rightarrow2+\frac{b+c}{a}=2+\frac{a+c}{b}=2+\frac{a+b}{c}=4\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=2\)
Vậy N = 6
BÀI 1: Theo đề bài, ta có:
\(ac+c^2=b^2+bd\Rightarrow c\left(a+c\right)=b\left(b+d\right)\Rightarrow c\left(a+c\right)+bc=b\left(b+d\right)+bc\)\(\Rightarrow c\left(a+b+c\right)=b\left(b+c+d\right)\)\(\Rightarrow\frac{a+b+c}{b+c+d}=\frac{b}{c}\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\left(\frac{b}{c}\right)^3=\frac{b^2b}{c^2c}=\frac{acb}{bdc}=\frac{a}{d}\).
1) Cho a,b,c>0 tm a+b+c=3. Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
2) Cho a,b,c>0 tm \(a^2+b^2+c^2\le abc\).Cmr \(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ab}\le\frac{1}{2}\)
3) Cho a,b,c>0 tm \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\).Cmr \(\sqrt{\frac{ab}{a+b+2c}}+\sqrt{\frac{bc}{b+c+2a}}+\sqrt{\frac{ca}{c+a+2b}}\le\frac{1}{2}\)
Giúp mình mới nhé các bạn. Mình đang cần gấp
Cho các số thực a,b,c khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) Tính \(P=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
Mình đang cần gấp. Giúp mình với
Em tham khảo link:Câu hỏi của Conan Kudo - Toán lớp 8 - Học toán với OnlineMath
Ta có bổ đề
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
ÁP DỤNG BỔ ĐỀ VÀO P ta có
\(P=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc.\frac{3}{abc}=3\)
Vậy P=3
bài 1: a) Cho a,b,c khác 0 và a2 = bc
CMR : \(\frac{a^2+c^2}{b^2+d^2}\) = \(\frac{c}{b}\)
b) Cho a,b,c,d khác 0 và b2 = ad , c2 = bd
CMR : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) = \(\frac{a}{d}\)
Làm nhanh giúp mình nha mình đang cần gấp
b) a2=ac\(\Rightarrow\) \(\frac{a}{b}=\frac{b}{c}\)
c2=bd\(\Rightarrow\) \(\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) = \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\) = \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=\(\frac{a.b.c}{b.c.d}=\frac{a}{d}\)
=> đpcm
Cho các số thực dương a,b,c. Chứng minh rằng: \(\sqrt{\frac{a}{b+2c}}+\sqrt{\frac{b}{a+2c}}+2\sqrt{\frac{c}{a+b+c}}>2\).
Giúp mình với, mình đang cần gấp
Bài1: Cho \(ac=b^2;bd=c^2\)
CMR \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Bài2: Cho \(\frac{2a+b+c}{a}=\frac{a+2b+c}{b}=\frac{a+b+2c}{c}\)
Tính N= \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
GIÚP MÌNH VS!!!! ĐANG CẦN GẤP
Bài 2 :
Ta có :
\(\dfrac{2a+b+c}{a}=\dfrac{a+2b+c}{b}=\dfrac{a+b+2c}{c}\)
\(\Rightarrow\dfrac{2a+b+c}{a}-1=\dfrac{a+2b+c}{b}-1=\dfrac{a+b+2c}{c}-1\)\(\Rightarrow\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}=\dfrac{a+b+c}{c}\)
* Nếu \(a+b+c=0\), Ta suy ra các đẳng thức sau :
\(\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)
Thay các đẳng thức vừa tìm được vào N, ta có :
\(N=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)
\(\Leftrightarrow N=\dfrac{-c}{c}+\dfrac{-a}{a}+\dfrac{-b}{b}\)
\(\Leftrightarrow N=-1+\left(-1\right)+\left(-1\right)=-3\)
* Nếu \(a+b+c\ne0\)
Để \(\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}=\dfrac{a+b+c}{c}\)
\(\Rightarrow a=b=c\)
\(\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)
Thay các đẳng thức vào N ta có :
\(N=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)
\(\Leftrightarrow N=\dfrac{2c}{c}+\dfrac{2a}{a}+\dfrac{2b}{b}=2+2+2=6\)
Vậy.....
tik mik nha !!!
cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
cmr: \(a+b+c=abc\)
giúp mk vs đg cần gấp
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=1\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=1\)
\(\Leftrightarrow2+2.\frac{a+b+c}{abc}=1\Leftrightarrow\frac{a+b+c}{abc}=-\frac{1}{2}\Leftrightarrow2\left(a+b+c\right)=-abc\)
có chép nhầm đề không ý nhỉ?
ak hình như mk chép sai đề \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
bn có thể giúp mk đc ko Trà My
mk bt dạng tương tự thôi
Ta có:
(1/a + 1/b + 1/c)^2 = 1/a^2 + 1/b^2 + 1/c^2 + 2/ab + 2/bc + 2/ac
= 1/a^2 + 1/b^2 + 1/c^2 + 2.(1/ab + 1/bc + 1/ac)
=> 2^2 = 2 + 2.(1/ab + 1/bc + 1/ac)
<=> 2 = 2.(1/ab + 1/bc + 1/ac)
<=> 1/ab + 1/bc + 1/ac= 1
<=> c/abc + a/abc + b/abc = abc/abc
<=> a + b + c = abc
Vậy a + b + c = abc
Cho \(\frac{a}{c}=\frac{c}{b}\)chứng minh rằng \(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\)
Giúp mình với đang cần gấp lắm!
Ai nhanh nhất mình cho 1 tick đúng nhé!
Cho a, b, c là các số thực dương. Chứng minh bất đẳng thức:
\(\frac{a+b}{bc+a^2}+\frac{b+c}{ac+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Giup vs e đang cần gấp