giải tam giác vuông ABC lớp 9 biết AB=15,C=35 độ18'
Cho tam giác ABC vuông tại B. Giải tam giác ABC biết rằng:
b) cotC = \(\dfrac{1}{\sqrt{3}}\); AB = 5cm
c) AB = 8, BC = 15
a) Để giải tam giác ABC, chúng ta cần biết thêm một thông tin khác về tam giác, ví dụ như độ dài cạnh AC hoặc giá trị của một góc trong tam giác. Với thông tin hiện tại, không đủ để giải tam giác ABC.
b) Từ công thức cotC = AB/BC, và AB = 5cm, ta có:
cotC = 5/BC = 1/3
Vậy, cotC = 1/3.
c) Từ định lý Pythagoras trong tam giác vuông, ta có:
AB^2 + BC^2 = AC^2
8^2 + 15^2 = AC^2
64 + 225 = AC^2
289 = AC^2
AC = √289
AC = 17 cm
Vậy, độ dài cạnh AC của tam giác ABC là 17cm
1. Cho tam giác ABC vuông tại A, biết AH = 16, BH = 9. Tính AB.
2. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Tính độ dài HB.
3. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12, BC = 15. Tính HC.
4. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 6, HC = 9. Tính độ dài AC.
5. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 16cm. Tính AH
6. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 8cm, HC = 12 cm. Tính AC.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Cho tam giác ABC vuông tại A,Giải tam giác ABC biết
a,AC=15cm góc C=35 độ
b,AB=8cm,góc C=50 độ
a: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{B}=55^0\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)
=>\(BC=15:sin55\simeq18.31\left(cm\right)\)
\(AB=\sqrt{BC^2-AC^2}\simeq10,5\left(cm\right)\)
b: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{B}=90^0-50^0=40^0\)
Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)
=>\(BC=8:sin50\simeq10,44\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq6,71\left(cm\right)\)
cho tam giác ABC vuông tại A
AB=3
C=35 độ
giải tam giác ABC
BC= \(\frac{AB}{\sin C}=\frac{3}{\sin35}\approx5.23\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5.23^2-3^2}\approx4.284\)
\(\Rightarrow gócB=90-35=55\)
Cho tam giác ABC vuông tại A, có BC = a, AC = b, AB = c. Giải tam giác ABC, biết:
a, a = 15 cm, b = 10 cm
b, b = 12 cm, c = 7 cm
Bài 1: Cho tam giác ABC vuông tại A giải Tam giác ABC biết: a) Góc B= 35 độ, BC=40 cm
b) AB=70cm, AC=60cm
c) AB=6cm, góc B=60 độ
d) AB=5cm, AC=7cm
2) Cho tam giác ABC góc A =90 độ đường cao AH biết HB=25cm, HC =64cm tín số đo góc B và C
3)Tam giác ABC có góc A =90 độ, AB=21cm, ggos C =40 độ tính độ dài đường phân giác BD
4) Tam giác ABC có góc B=70 độ góc C=35 độ đường cao AH=5cm tính độ dài AB,AC,B
Cho tam giác ABC vuông tại A , biết AC = 10 cm ,góc C= 30 độ . hãy giải tam giác vuông ABC
Hì, giải cách lớp 7 nha, thanks nhìu. Lớp 7 hoặc dưới lớp 7 cũng được
Cho tam giác ABC vuông tại A. Giải tam giác ABC, biết:
a) AC = 12cm, AB = 7cm.
b) BC = 20cm. B =35°;
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay \(BC=\sqrt{193}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{\sqrt{193}}\)
\(\Leftrightarrow\widehat{B}\simeq60^0\)
\(\Leftrightarrow\widehat{C}=30^0\)
cho tam giác ABC vuông tại A và đường cao AH
a) Biết HB=4 , HC=9. Giải tam giác ABC
b) Biết AB=6 , góc B=53 độ . giải tam giác ABC
c) E,F lần lượt là hình chiếu của H trên AB,AC,CM. Tam giác EHF là hình chữ nhật và AH=EF