Cho tam giác ABC cân tại A, nội tiếp đường tròn (O). Tia phân giác của góc \(\widehat{ABC}\)cắt
đường tròn (O) ở D, tia phân giác \(\widehat{ACB}\)cắt đường tròn (O) ở E. Chứng minh rằng:
AD = AE
Cho tam giác ABC nội tiếp đường tròn (O),
AB < AC. Tia phân giác của góc A cắt BC ở D, cắt
đường tròn ở E. Trên tia AC lấy điểm K sao cho AK
= AB. Chứng minh rằng:
a) ∆ABD = ∆AKD
b) DKCE là tứ giác nội tiếp
Cho tam giác ABC nội tiếp trong đường tròn (O). Tia phân giác của góc A cắt BC ở D và cắt đường tròn ở E. Chứng minh rằng: a) AB.AC = AD.AE b) BE 2 = AE. DE
a: Xét ΔABE và ΔADC có
\(\widehat{ABE}=\widehat{ADC}\)
\(\widehat{BAE}=\widehat{DAC}\)
Do đó: ΔABE\(\sim\)ΔADC
Suy ra: \(AB\cdot AC=AD\cdot AE\)
Cho tam giác ABC nội tiếp đường tròn O, tia phân giác của góc A cắt BC ở D và (O) tại M, đường phân giác của góc ngoài đỉnh A của tam giác ABC cắt (O) ở N. Chứng minh
a) góc BMC= góc ABC+ góc ACB
b) OM vuông góc BC
c) M,O,N thẳng hàng
Cho tam giác ABC nội tiếp đường tròn (O). Tia phân giác góc A cắt BC tại F, cắt đường tròn tại E. Chứng minh:
a) \(\Delta\)BEC cân
b) \(\widehat{BEC}\)=\(\widehat{ABC}\)+\(\widehat{ACB}\)
c) AB.AC=AE.AF
d)\(AF^2\)=AB.AC-BF.CF
Mình sẽ làm từ câu C nha vì câu C có liên quan đến câu cuối
c/ Xét tam giác ABF và tam giác AEC ta có :
Góc BAF = góc CAE ( AF là phân giác)
góc ABF = góc AEC ( 2 góc nt chắn cung AC)
=>tam giác ABF đồng dạng tam giác AEC (g-g)
=>\(\frac{AB}{AE}=\frac{AF}{AC}\)=>AB.AC=AE.AF
d/ Xét tam giác ABF và tam giác CFE ta có:
góc ABF = góc FEC ( 2 góc nt chắn cung AC )
góc BAF = góc FCE (2 góc nt chắn cung EB )
=> tam giác ABF đồng dạng tam giác CEF (g-g)
=>\(\frac{FB}{FE}=\frac{FA}{FC}\)=>FB.FC=FA.FE
Ta có AF.AE=AB.AC (cmt)
AF.FE=BF.CF (cmt)
=> AF.AE-AF.FE = AB.AC - BF.CF
=> AF(AE-FE) = AB.AC - BF.CF
=> \(AF^2=AB.AC-BF.CF\)
a) Xét (O) có AE là tia phân giác của góc BAC
=> ^BAE=^CAE
=> sđBE=sđCE
=> BE=CE (liên hệ giữa cung và dây cung)
=> tam giác BEC cân tại E (đpcm)
b) Tứ giác ABEC nội tiếp (O)
=> ^BAC+^BEC=180 độ (2 góc đối nhau)
<=> ^BEC=180 độ - ^BAC
Tam giác ABC có ^BAC+^ABC+^BCA=180 độ
=> =180 độ - ^BAC=^ABC+^BCA
Suy ra Góc BEC = góc ABC + góc ACB (đpcm)
c) AE là tia phân giác của góc BAC
=> ^BAE=^CAE
Hay ^BAF=^CAE
Tứ giác ABEC nội tiếp (O)
=> ^ABC=^AEC (2 góc nt chắn cung AC)
Hay ^ABF=^AEC
Xét tam giác ABF và tam giác AEC có:
^ABF=^AEC
^BAF=^CAE
=> tam giác ABF ~ tam giác AEC (g-g)
=> AB/AF=AE/AC
<=> AB.AC=AE.AF (đpcm)
Cho tam giác ABC nội tiếp đường tròn O. Tia phân giác của góc A cắt BC ở D và cắt đường tròn tại M. Đường phân giác của góc ngoài đỉnh A của tam giác ABC cắt đường tròn ở N. CMR:
a) Góc BMC= góc ABC + góc ACB
b) OM vuông góc với BC
c) M; O; N thẳng hàng
d) AD.AM = AB.AC
e) MB.MC=MD.MA.
Cho tam giác ABC nội tiếp đường tròn tâm O. Tia phân giác của góc A cắt
đường tròn tại E, tia phân giác của góc B cắt đường tròn tại F; AE cắt BF tại
K; EF cắt CB, CA lần lượt lại Q và P, CK cắt PQ tại G. Chứng minh:
a) EF là tia phân giác của góc AEC.
b) Tam giác AKF cân F.
c) Tam giác ECK cân tại E.
d) G là trung điểm của PQ
Bài 3. Cho tam giác ABC vuông ở A, với AC > AB. Trên AC lấy điểm M, vẽ đường tròn tâm O đường kính MC. Tia BM cắt đường tròn (O) tại D. Đường thẳng qua A và D cắt đường tròn (O) tại S. a) Chứng minh ABCD là tứ giác nội tiếp b) Chứng minh AC là tia phân giác của góc SCB c) Gọi E là giao điểm của BC với đường tròn (O). Chứng minh rằng các đường thẳng BA, EM, CD đồng quy. d) Chứng minh DM là tia phân giác của góc ADE e) Chứng minh M là tâm đường tròn nội tiếp tam giác ADE
Cho tam giác ABC nội tiếp đường tròn tâm O. Tia phân giác của góc BAC cắt BC ở D và cắt đường tròn (O) tại E. Chứng minh rằng:
a) AB . AC = AD . AE;
b) ED . EA = EB2.
a, vì \(AD\) là tia phân giác của góc \(\widehat{BAC}\) \(\Rightarrow\widehat{BAD}=\widehat{EAC}\)
mà \(\widehat{ABD}=\widehat{ABC}=\widehat{AEC}\)
\(\Rightarrow\Delta ABD~\Delta AEC\) (g-g)
\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AC}\Leftrightarrow AB.AC=AE.AD\)
b, Ta có :
\(\widehat{EBD}=\widehat{EBC}=\widehat{EAC}=\widehat{BAE}\)
\(\Rightarrow\Delta EBD~\Delta EAB\)(g-g)
\(\Rightarrow\frac{EB}{EA}=\frac{ED}{EB}\Leftrightarrow ED.EA=EB^2\)
a)xét ΔABE và ΔADC có :
BÅE = DÅC (gt)
AEB=ACB=ACD(cùng chắn cung AB)
=>ΔABE≈ΔADC(g.g)
⇒\(\dfrac{AE}{AC}=\dfrac{AB}{AD}\)(hai cạnh t.ứ)
⇒AE.AD=AC.AB
b)Xét ΔBED và ΔAEB có :
góc E chung
góc EBD=gócEAC=gócEAB
⇒ΔBED ≈ ΔAEB(g.g)
⇒\(\dfrac{ED}{EB}=\dfrac{EB}{EA}\)(hai cạnh t.ứ)
⇒ED.EA=EB2
Cho điểm M thuộc cạnh a của tam giác ABC vuông tại A Vẽ đường tròn O đường kính MC cắt BC tại E D BM cắt đường tròn O tại D tia AD cắt đường tròn O tại E AE cắt đường tròn O tại f Chứng minh câu a tứ giác ABCD nội tiếp K là phân giác góc s a b c a b c d đồng quy câu d d m là phân giác góc ade câu a m là tâm đường tròn nội tiếp tam giác hde f d f song song AB