Cho tam giác ABC nội tiếp (O), AB<AC. Tia phân giác góc A cắt BC tại D, cắt đường tròn tại E. Trên tia AC lấy K: AK=AB.c/m
a) DKCE là tứ giác nội tiếp
b) c/m AK.AC=AD.AE
c)AE2 -BE2= AK.AC
Bài 3. Cho tam giác ABC vuông ở A, với AC > AB. Trên AC lấy điểm M, vẽ đường tròn tâm O đường kính MC. Tia BM cắt đường tròn (O) tại D. Đường thẳng qua A và D cắt đường tròn (O) tại S. a) Chứng minh ABCD là tứ giác nội tiếp b) Chứng minh AC là tia phân giác của góc SCB c) Gọi E là giao điểm của BC với đường tròn (O). Chứng minh rằng các đường thẳng BA, EM, CD đồng quy. d) Chứng minh DM là tia phân giác của góc ADE e) Chứng minh M là tâm đường tròn nội tiếp tam giác ADE
B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.
Cho tam giac ABC (AB<AC) có ba góc nhọn. Vẽ đường tròn tâm (O) đường kính BC. Đường tròn này cắt AB tại E và cắt Ac ở D. BD cắt CE tại H.
a. Chứng minh tứ giác ADHE là tứ giác nội tiếp.
b. Chứng minh AD.AC= AE.AB
c. Chứng minh FH là tia phân giác của góc DFE, với F là giao điểm của AH và BC.
d. Cho BC=2a và góc BAC= 60 độ. Chứng minh tứ giác DEFO là tứ giác nội tiếp và tính chu vi của đường tròn ngoại tiếp tứ giác này theo a.
cho đường tròn tâm O, đường kính BC, lấy điểm a trên cung bc sao cho AB<AC. Trên OC lấy điểm D, từ D kẻ đường thẳng vuông góc với BC cắt AC tại E.
a) chứng minh tứ giác ABDE nội tiếp
b) Chứng minh góc DAE = góc DBE
c) Đường cao AH của tam giác ABC cắt đường tròn tại F. Chứng minh: HF. DC = HC . ED
d) Chứng minh BC là tia phân giác của góc ABF
cho tam giác ABC nội tiếp chắn nửa đường tròn,đường kính BC.Tiếp tuyến tại B của nửa đường tròn cắt AC tại D, lấy F thuộc cung AB, CF cát BD tại E, AF cắt BD tại K.
a) CM; góc ABD=AFC; tứ giác ADEF nội tiếp
b) tia phân giác của góc DCE cắt AF ở P và cắt BD ở M
Tia phân giác của góc AKD cắt CE ở Q và cắt CD ở N.
CM; tam giác KMP và tam giác CNQ là tam giác cân
c) CM; tứ giác MNPQ là tứ giác nội tiếp.
Cho △ ABC vuông tại A, với AC > AB. Trên AC lấy một điểm M, vẽ đường tròn (O) đường kính MC. Tia BM cắt đường tròn (O) tại D. Đường thẳng qua A và D cắt đường tròn (O) tại S
a. Chứng minh ABCD là tứ giác nội tiếp.
B. Chứng minh góc ABD = góc ABD
C. Chứng minh CA là tia phân giác của góc. AOB bằng 75°
Cho tam giác ABC cân tại A, nội tiếp đường tròn (O), tia AO cắt đường tròn (O) tại D. Lấy M trên cung nhỏ AB. Dây MD cắt dây BC tại I. Trên tai đối của MC lấy điểm E sao cho ME = MB. Chứng minh:
a) MD là phân giác của góc BMC
b) MI song song BE
c) Gọi giao điểm của đường tròn tâm D, bán kính DC với MC là k. Chứng minh rằng tứ giác DCKI nội tiếp
Cho tam giác ABC vuông ở A. Trên AC lấy một điểm M và vẽ đường tròn đường kính MC. Kẻ BM cắt đường tròn tại D. Đường thẳng DA cắt đường tròn tại S. Chứng minh rằng:
a) ABCD là một tứ giác nội tiếp
b) góc ABD bằng góc ACD
c) CA là tia phân giác của góc SCB