cho ak=1-4/(ak+1)2. Chung minh rang T=a1a2a3...a50>1/3
cho Ak =1- \(\frac{4}{\left(2k+1\right)^2}\) với k>=1 chứng minh P=A1. A2 .A3. ..... A50 > 1/3
Cho tam giac ABC vuong can voi day BC. Goi M va N lan luot la trung diem cua AB va AC. Ke NH vuong goc voi CM tai H, HE vuong goc voi AB tai E, AK vuong goc voi HM tai K.
a, Chung minh rang: AK = HC va H la trung diem cua KC
b, Cho AH = 4 cm. Tinh dien tich tam giac ABC
c, Chung minh rang HM la phan giac goc EHB
Bạn tự vẽ hình nhé
Xét các tam giác vuông AKM và tam giác vuông CHN có
AM=NC ( bằng 1 nửa đoạn AB=AC)
Góc MAK= góc NCH ( cùng phụ với AMC)
=> \(\Delta AKM=\Delta CHN\)( cạnh huyền - góc nhọn)
=> AK=HC ( 2 cạnh tương ứng)
Ta có NH//AK( quan hệ giữa tính vuông góc và song song) (1)
Có N là trung điểm của cạnh AC (2)
Từ (1) và (2) => NH là đường trung bình của \(\Delta ACK\)
=>H là trung điểm của KC
b) Theo câu a, ta có AK=HC và KH=HC
=>AK=HC
=> AK2+KH2=AH2
=>2.AK2=16
=>AK2=8
=>AK=KH=\(\sqrt{8}\)
=>KC=2.KH=2.\(\sqrt{8}\)=\(\sqrt{32}\)
Xét tam giác vuông AKC vuông tại K có AC2=AK2+KC2
=>AC2=8+32=40
=>\(AC=AB=\sqrt{40}\)
Diện tích tam giác ABC là
\(\frac{\sqrt{40}.\sqrt{40}}{2}=\frac{40}{2}=20\) cm2
Câu c hình như sai đề
Theo cau a ta co:
goc BAK = gocACH va AK = CH
Ta CM duoc tam giac BKA = Tam giac AHC ( c . g . c )
Suy ra goc DKA = goc AHC
Ma tam giac AKH vuong tai A
Suy ra goc AHK = 45 do
Suy ra goc AHC = 135 do ( ke bu )
Hay goc AKB = 135 do
Ta co goc AKH = 90 do Suy ra goc BKH = 135 do
Hay AKB = 135 do
Ta lai co goc AKH = 90 do Suy ra BKH = 35 do
Suy ra tam giac BKA = tam gic BKM
goc BHK = goc BAK
Do HE || AC ( cung vuong goc AB )
Suy ra goc EHM = goc ACH Va goc BAK = goc ACH
Suy ra BHK = MHE
HM la tia phan giac goc EHB
cho tam giac ABC can tai A. BD va CE la 2 duong phan giac cua tam giac ABC, chung cat nhau tai K.
Chung minh rang: AK di qua trung diem cua BC
cho hinh vuong ABCD diem E thuoc canh CD . Tia phan giac cua goc ABE cat AD o K . chung minh rang AK+CE =BE
a,A=1/1^2+1/2^2+1/3^2+1/4^2+...+1/50^2.chung minh rang a<2
b;2^1+2^2+2^3+...+2^30.chung minh rang B chia het cho21
chung minh rang 4+4^3+4^5+4^7+...+4^23 chia het cho 68
chung minh rang 1+3+3^2+3^3+...+3^2000 chia het cho 13
giup mink voi thu 6 mink nop roi
4 + 4^3 + 4^5 + 4^7 + ... + 4^23
= ( 4 + 4^3 ) + ( 4^5 + 4^7 ) +.....+ ( 4^22 + 4^23)
=4( 1+16 ) + 4^5( 1+16 ) +....+ 4^22( 1+ 16 )
=4 x 17 + 4^5 x 17+....+ 4^22 x 17 chia hết cho 68
Câu 2:
1+3+3^2+3^3+....+3^2000
=( 1+3 +3^2 ) + ( 3^3 + 3^4 + 3^5 ) +.....+ ( 3^ 1998 + 3^1999 + 3^2000)
=1( 1+ 3 + 9 ) + 3^3 + ( 1+ 3 + 9 ) +......+ 3^1998+( 1+ 3 + 9 )
= 1 x 13+ 3^3 x 13 +......+ 3^1998 x 13 chia hết cho 13
k mk nha lần sau mk k lại
Câu 1 nha : 4+4^3+4^5+4^7+....+4^23 = (4+4^3)+(4^5+4^7)+....+(4^21+4^23)
= 68 + 4^4.(4+4^3)+....+4^20.(4+4^3) = 68 + 4^4.68 + .... + 4^20.68
=68.(1+4^4+....+4^20) chia hết cho 68
Câu 2 nha 1+3+3^2+...+3^2000 = (1+3+3^2)+(3^3+3^4+3^5)+....+(3^1998+3^1999+3^2000)
= 13 + 3^3.(1+3+3^2)+....+3^1998.(1+3+3^2) = 13+3^3.13+....+3^1998.13
=13.(1+3^3+....+3^1998) chia hết cho 13
CHO tổng M =1/4+2/4 mũ 2+3/4 mũ 3+4/4mũ4+......+2018/4 mũ 2018. Chung minh rang;M<1/2
cho A = 1/2 - 1/4 +1/8 - 1/10 + 1/32 -1/64
chung minh rang a < 1/3
ai lam dc minh tick cho
chung minh rang 1/2!+1/3!+1/4!+..................+1/100!<1
Đặt \(A=\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{100!}\)
Ta thấy:
\(\dfrac{1}{2!}=\dfrac{1}{1.2};\dfrac{1}{3!}=\dfrac{1}{1.2.3}< \dfrac{1}{2.3};...;\dfrac{1}{100!}=\dfrac{1}{1.2...100}< \dfrac{1}{99.100}\)
Cộng vế với vế ta được:
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A< 1-\dfrac{1}{100}< 1\)
Vậy \(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{100!}< 1\) (Đpcm)
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+\dfrac{1}{100!}\)
\(=\left(\dfrac{1}{1!}-\dfrac{1}{2!}\right)+\left(\dfrac{1}{2!}-\dfrac{1}{3!}\right)+\left(\dfrac{1}{3!}-\dfrac{1}{4!}\right)+...+\left(\dfrac{1}{99!}-\dfrac{1}{100!}\right)\)
\(=1-\dfrac{1}{100!}< 1\)