CMR với mọi số nguyên m thì m3 - m luôn chia hết cho 6.
CMR với mọi số nguyên a thì A=\(a^3-6a^2-7a+12\) luôn chia hết cho 6
ta có
\(A=a^3-a-6a^2-6a+12=a\left(a-1\right)\left(a+1\right)-6\left(a^2-a-2\right)\)
do a là số nguyên nên \(â\left(a-1\right)\left(a+1\right)\)chia hết cho 6
mà hiển nhiên \(-6\left(a^2-a-2\right)\)chia hết cho 6
vậy A chia hết cho 6
CMR: với mọi số nguyên n thì giá trị biểu thức \(n^3+12n^2-n+6\) luôn chia hết cho 6.
cmr: m^3+5m chia hết cho 6 với mọi số nguyên m
CMR: Với mọi số nguyên n giá trị biểu thức M = ( 2n + 3 )2 – 9 luôn chia hết cho 4.
M = 4x2 + 4x = 4x(x+1) luôn chia hết cho 4
cmr: với m là số nguyên thì
a, \(m^3-n\)chia hết cho 6
b,\(m^{3+}5m\)và \(m^3-19m\)cũng luôn chia hết cho 8
a/ \(m^3-m=m\left(m^2-1\right)=m\left(m-1\right)\left(m+1\right)\)
Đây là 3 số nguyên liên tiếp nên chia hết cho 6
CMR:
(n-1)2(n+1)+(n2-1) luôn chia hết cho 6 với mọi số nguyên n.
\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!\)
hay \(n\left(n-1\right)\left(n+1\right)⋮6\)
CMR luôn tồn tại STN n sao cho 5^n+1 chia hết cho 7^2018
CMR1^m+2^m+...+2017^m luôn chia hết cho 1+2+3+...+2017 với mọi m nguyên dương
M.n giúp mk zới -_-
:3 Số 'm' phải là số lẻ nhé cậu
Ta có : \(1+2+...+2017=\frac{2017.\left(2017+1\right)}{2}=2017.1009\)
Đặt \(S=\left(1^m+2^m+...+2017^m\right)\)
Ta có : \(S=\left(1^m+2017^m\right)+\left(2^m+2016^m\right)+......\)
Do m lẻ nên \(S⋮2018=1009.2⋮1009\)
Vậy \(S⋮1009\)
Mặt khác ta lại có
\(S=\left(1^m+2^m+...+2017^m\right)=\left(1^m+2016^m\right)+\left(2^m+2015^m\right)+.....+2017^m\) \(⋮2017\)
=> \(S⋮2017\)
Mà (1009,2017) = 1
=> \(S⋮2017.1009=......\)
CMR 2^n+6*9^n luôn chia hết cho 7 với mọi số nguyên dương n
Với \(n=1\Rightarrow2^n+6.9^n=2+6.9=56⋮7\)
Giả sử \(2^k+6.9^k⋮7\) ta cần chứng minh \(2^{k+1}+6.9^{k+1}⋮7\)
\(2^{k+1}+6.9^{k+1}=2.2^k+6.9.9^k=2\left(2^k+27.9^k\right)=2\left(2^k+6.9^k+21.9^k\right)\)
Ta thấy \(2^k+6.9^k⋮7;21.9^k⋮7\Rightarrow2^{k+1}+6.9^{k+1}⋮7\)
Kết luận: \(2^n+6.9^n⋮7\forall n\)
Cho biểu thức P(n) = an+b.n+c, trong đó a,b,c là những số nguyên. Biết rằng với mọi giá trị nguyên dương n, giá trị của biểu thức P(n) luôn chia hết cho một số nguyên dương m cho trước. CMR b2 phải chia hết cho m