Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hà Trang
Xem chi tiết
Dương Lam Hàng
7 tháng 7 2018 lúc 15:03

a) Ta có: \(x^2-20x+101=x^2-2.x.10+10^2+1=\left(x-10\right)^2+1\)

Vì \(\left(x-10\right)^2\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow\left(x-10\right)^2+1>1>0\)

Vậy x2-20x+101 >0 với mọi x

b) \(4a^2+4a+2=\left(2a\right)^2+2.2a.1+1+1=\left(2a+1\right)^2+1\)

Vì \(\left(2a+1\right)^2\ge0\left(\forall a\in Z\right)\)

\(\Rightarrow\left(2a+1\right)^2+1>1>0\)

Vậy 4a2+4a+2 > 0 với mọi a

c) \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)+16\)

\(=\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+16\)

\(=\left(x^2+10x+20\right)^2\) \(\ge0\left(\forall x\right)\)

Lê Hà Trang
7 tháng 7 2018 lúc 15:01

Giúp mình với !!

Nhung Trần
Xem chi tiết
Trần Hà My
Xem chi tiết
Nguyễn Tuệ Minh
Xem chi tiết
Dương Nguyệt Ánh Phương
Xem chi tiết
Akai Haruma
26 tháng 1 lúc 19:07

Lời giải:

$5a^2+2b^2=11ab$

$\Leftrightarrow 5a^2+2b^2-11ab=0$

$\Leftrightarrow (5a^2-10ab)-(ab-2b^2)=0$

$\Leftrightarrow 5a(a-2b)-b(a-2b)=0$

$\Leftrightarrow (a-2b)(5a-b)=0$

Do $a>2b>0$ nên $a-2b>0$. Do dó $5a-b=0$

$\Leftrightarrow b=5a$. Khi đó:

$A=\frac{4a^2-5b^2}{a^2+2ab}=\frac{4a^2-5(5a)^2}{a^2+2a.5a}=\frac{-121a^2}{11a^2}=-11$

Hoang Minh
Xem chi tiết
Nguyễn Thị Mai Linh
14 tháng 7 2023 lúc 22:15

loading...

Đào Mạnh Tuyên
Xem chi tiết
Đào Mạnh Tuyên
Xem chi tiết
Hung Ngo
Xem chi tiết
kiss_rain_and_you
19 tháng 4 2015 lúc 21:39

= (4a^2 -4a + 1) + (b^2 + 2b+ 1) + 1/2 

= (2a-1)^2 + (b+1)^2 + 1/2 >0 với mọi a, b