cho 2 số thực dương a,b
chứng minh \(ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1\)
a, Cho a,b là các số thực dương và ab<1. Chứng minh \(\frac{1}{1+a}+\frac{1}{1+b}\le\frac{2}{1+\sqrt{ab}}\)
b, Cho a,b,c là các số thực dương thỏa mãm abc=1. Chứng minh:
\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)
Cho a,b,c là các số thực dương. CHỨNG MINH RẰNG : \(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)
Cho các số thực dương a, b, c. Chứng minh rằng
\(\frac{a^2+bc}{b+c}+\frac{b^2+ca}{c+a}+\frac{c^2+ab}{a+b}\ge a+b+c\)
Let \(D=\left(a+b\right)\left(b+c\right)\left(c+a\right)\). Clearly \(D>0\). We show that the difference between the left-hand side and the right-hand of the inequality is non-negative
\(\frac{a^2+bc}{b+c}-a+\frac{b^2+ca}{c+a}-b+\frac{c^2+ab}{a+b}-c\)
\(=\frac{a^2+bc-ab-ac}{b+c}+\frac{b^2+ac-ab-bc}{a+c}+\frac{c^2+ab-ac-bc}{a+b}\)
\(=\frac{\left(a-b\right)\left(a-c\right)}{b+c}+\frac{\left(b-a\right)\left(b-c\right)}{a+c}+\frac{\left(c-a\right)\left(c-b\right)}{a+b}\)
\(=\frac{\left(a^2-b^2\right)\left(a^2-c^2\right)+\left(b^2-a^2\right)\left(b^2-c^2\right)+\left(c^2-a^2\right)\left(c^2-b^2\right)}{D}\)
\(=\frac{a^4+b^4+c^4-b^2c^2-c^2a^2-a^2b^2}{D}\)
\(=\frac{\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2}{2D}\ge0\)
Equality holds if and only if \(a=b=c\)
Done !
Mỗi lần thấy bất đẳng thức kiểu này là mình mù đường không biết nên đi hướng nào luôn. Mình triển khai theo Cauchy nó ra loạn xạ luôn. hihi
cho ba số thực dương a, b, c thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\) . chứng minh rằng: \(\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\)
Nhân 2 vế của \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\) có: \(ab+bc+ca=abc\)
Ta có:
\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^2}{a+bc}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\)
\(\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(a+c\right)}\cdot\frac{a+b}{8}\cdot\frac{a+c}{8}}=\frac{3a}{4}\)
Tương tự cho 2 BĐT còn lại ta có:
\(\frac{b^2}{b+ca}+\frac{a+b}{8}+\frac{b+c}{8}\ge\frac{3b}{4};\frac{c^2}{c+ab}+\frac{a+c}{8}+\frac{b+c}{8}\ge\frac{3c}{4}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT+\frac{4\left(a+b+c\right)}{8}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Leftrightarrow VT+\frac{4\left(a+b+c\right)}{8}\ge\frac{6\left(a+b+c\right)}{8}\)
\(\Leftrightarrow VT\ge\frac{a+b+c}{4}=VP\). Ta có ĐPCM
Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\ge\frac{3}{4}\)\(\ge\)3/4
Sửa đề: Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng
\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)
Áp dụng bđt Cauchy-Schwarz ta có:
\(\frac{1}{ab+b+2}=\frac{1}{ab+1+b+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{b+1}\right)\) \(=\frac{1}{4}\left(\frac{abc}{ab\left(1+c\right)}+\frac{1}{b+1}\right)=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{b+1}\right)\)
Tương tự \(\frac{1}{bc+c+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)
\(\frac{1}{ca+a+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{a+1}\right)\)
Cộng từng vế các bđt trên ta được
\(VT\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)
Vậy bđt được chứng minh
Dấu "=" xảy ra khi a=b=c=1
Cho a, b, c là các số thực dương thoả mãn a+b+c=3. Chứng minh rằng:
\(\frac{a}{b^2\left(ca+1\right)}+\frac{b}{c^2\left(ab+1\right)}+\frac{c}{a^2\left(bc+1\right)}\ge\frac{9}{\left(1+abc\right)\left(ab+bc+ca\right)}\)
Theo bđt Cauchy - Schwart ta có:
\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)
\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)
Đặt \(ab+bc+ca=x;abc=y\).
Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)
\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )
Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1
làm sao mà \(x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\)lại luôn đúng
Cho a,b,c là các số thực dương. Chứng minh rằng :
\(\frac{a^3}{a^2+b^2+ab}+\frac{b^3}{b^2+c^2+bc}+\frac{c^3}{c^2+a^2+ca}\ge\frac{a+b+c}{3}\)
Ta có : \(\hept{\begin{cases}\frac{a^3}{a^2+b^2+ab}=\frac{a^4}{a\left(a^2+b^2+ab\right)}=\frac{a^4}{a^3+ab^2+a^2b}=\frac{a^4}{a^3+ab\left(a+b\right)}\\\frac{b^3}{b^2+c^2+bc}=\frac{b^4}{b\left(b^2+c^2+bc\right)}=\frac{b^4}{b^3+bc^2+b^2c}=\frac{b^4}{b^3+bc\left(b+c\right)}\\\frac{c^3}{c^2+a^2+ca}=\frac{c^4}{c\left(c^2+a^2+ca\right)}=\frac{c^4}{c^3+ca^2+c^2a}=\frac{c^4}{c^3+ca\left(c+a\right)}\end{cases}}\)
Khi đó bất đẳng thức được viết lại thành :
\(\frac{a^4}{a^3+ab\left(a+b\right)}+\frac{b^4}{b^3+bc\left(b+c\right)}+\frac{c^4}{c^3+ca\left(c+a\right)}\ge\frac{a+b+c}{3}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)
Dễ dàng phân tích \(a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
=> \(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)
Xét bất đẳng thức phụ : 3( a2 + b2 + c2 ) ≥ ( a + b + c )2
<=> 3a2 + 3b2 + 3c2 - a2 - b2 - c2 - 2ab - 2bc - 2ca ≥ 0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 ≥ 0 ( đúng )
Khi đó áp dụng vào bài toán ta có : \(VT\ge\frac{a^2+b^2+c^2}{a+b+c}=\frac{\frac{\left(a+b+c\right)^2}{3}}{a+b+c}=\frac{a+b+c}{3}\)( đpcm )
Đẳng thức xảy ra <=> a=b=c
bài này mới được thầy sửa hồi chiều nè @@
Vì a,b dương => ( a + b ) ( a - b )2 \(\ge\)0 => a3 + b3 \(\ge\)ab ( a + b )
BĐT tương đương với 3a3\(\ge\)2a3 + 2ab ( a + b ) - b3 = 2a3 + 2a2b + 2ab2 - a2b - ab2 - b3 = ( a2 + ab + b3 ) ( 2a - b )
Suy ra : \(\frac{a^3}{a^2+ab+b^2}\ge\frac{2a-b}{3}\)(1)
Chứng minh tương tự ta được : \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b-c}{3}\)(2) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c-a}{3}\)(3)
Từ (1) ; (2) và (3) => \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)(đpcm)
cách ít lòng vòng hơn cách của quỳnh nhiều nè
Ta có đẳng thức sau : \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)( cách cm thì chỉ cần chuyển vế rồi dùng hđt thôi)
Khi đó : \(2VT=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Áp dụng bất đẳng thức phụ \(\frac{x^3+y^3}{x^2+xy+y^2}\ge\frac{1}{3}\left(x+y\right)\)có : ( biến đổi tương đương là được nhé )
\(2VT\ge\frac{1}{3}\left(a+b\right)+\frac{1}{3}\left(b+c\right)+\frac{1}{3}\left(c+a\right)=\frac{1}{3}.2.\left(a+b+c\right)\)
\(< =>VT\ge\frac{1}{3}\left(a+b+c\right)=\frac{a+b+c}{3}\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)
CHO CÁC SỐ THỰC DƯƠNG a,b,c CHỨNG MINH RẰNG
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)
https://olm.vn/hoi-dap/detail/82505750499.html
Ở mục câu hỏi tương tự có bài đó bạn ơi
Bn vào link này nha!
https://olm.vn/hoi-dap/detail/82505750499.html
Hok tốt!
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1
Chứng minh rằng: \(\frac{a+bc}{b+c}+\frac{b+ca}{c+a}+\frac{c+ab}{a+b}\ge\)\(2\)