tim x y z biet
a) x.(y-2).(x^2-9)=0
Tim so nguyen x,y biet
a) (x+5) mu 2 + (2y - 8 ) mu 2 = 0
b)(x + 3).(2y - 1 ) = 5
a: \(\left(x+5\right)^2>=0\forall x\)
\(\left(2y-8\right)^2>=0\forall y\)
Do đó: \(\left(x+5\right)^2+\left(2y-8\right)^2>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+5=0\\2y-8=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-5\\y=4\end{matrix}\right.\)
b: \(\left(x+3\right)\left(2y-1\right)=5\)
=>\(\left(x+3\right)\left(2y-1\right)=1\cdot5=5\cdot1=\left(-1\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-1\right)\)
=>\(\left(x+3;2y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;3\right);\left(2;1\right);\left(-4;-2\right);\left(-8;0\right)\right\}\)
x/-2=9/y=3-2z/5
x+z=0
Tim y
Tim x , y thuộc Z biết
x/7 = 9/y và x > y
-2/x = y/5 và x < 0 < y
Tim x, y thuoc Z
A, x / 7 = 9/y va x>y
B, -2/x = y/6 va x<0<y
a: x/7=9/y
nên xy=63
mà x>y
nên \(\left(x,y\right)\in\left\{\left(63;1\right);\left(21;3\right);\left(9;7\right);\left(-1;-63\right);\left(-3;-21\right);\left(-7;-9\right)\right\}\)
b: -2/x=y/6
nên xy=-12
mà x<0<y
nên \(\left(x,y\right)\in\left\{\left(-12;1\right);\left(-6;2\right);\left(-4;3\right);\left(-3;4\right);\left(-2;6\right);\left(-1;12\right)\right\}\)
tim x;y;z biet x(x+y+z)=2; y(x+y+z)=25; z(x+y+z)=-2; x>0
Vậy x(x + y + z) + y(x + y+ z) + z(x + y + z) = 2 + 25 - 2 = 25
(x + y + z)(x + y + z) = 25
(x + y + z) = 52 = (-5) 2
Bạn tự liệt kê x;y;z ra nha!
Ta có : x (x + y + z) = 2 (1)
y (x + y + z) = 25 (2)
z (x + y + z) = -2 (3)
=> x (x + y + z) + y (x + y + z) + z (x + y + z) = 2 + 25 + (-2)
=> (x + y + z) (x + y + z) = 25
=> (x + y + z)2 = 52 = (-5)2
* Nếu (x + y + z)2 = 52 => x + y + z = 5 (4)
Từ (1) và (4) => x . 5 = 2 => x = 2/5 (thỏa mãn x > 0)
Từ (2) và (4) => y . 5 = 25 => y = 5
Từ (30 và (4) => z . 5 = -2 => z = -2/5
* Nếu (x + y + z)2 = (-5)2 => x + y + z = -5 (5)
Từ (1) và (5) => x . (-5) = 2 => x = -2/5 (ko thỏa mãn x > 0)
Vậy x = 2/5 ; y = 5 ; z = -2/5 thì thỏa mãn đề bài
cho x/-2=9/x=(3-2z)/5 va x+z=0. Tim y
thì đừng có đăng vào tốn diện tích olm
Ta có:
\(\frac{x}{-2}=\frac{2x}{-4}=\frac{3-2z}{5}=\frac{2x-\left(3-2z\right)}{-4-5}=\frac{2x+2z-3}{-9}=\frac{2\left(x+y\right)-3}{-9}=\frac{2.0-3}{-9}\)
\(=\frac{-3}{-9}=\frac{1}{3}\)
\(\Leftrightarrow\)\(y=3.9=27\)
Vậy y bằng 27
bai 1: Tim x biet
\(\hept{\begin{cases}x-y=\frac{3}{10}\\y\left(x-y\right)=-\frac{3}{50}\end{cases}}\)
bai 2: Tim x, y biet:
x+\(\left(-\frac{31}{12}\right)^2\)=\(\left(\frac{49}{12}\right)^2\)-x=y2
Bai 9: Tim x,y,z biet:
(x-1)2+(x+y)2+(xy-z)2=0
a) thay \(x-y=\frac{3}{10}\)vào \(y\left(x-y\right)=\frac{-3}{50}\)ta có\(\frac{3}{10}y=\frac{-3}{50}\)=>\(y=\frac{-3}{50}:\frac{3}{10}=\frac{-1}{5}\)=>\(x-y=\frac{3}{10}\Rightarrow x=\frac{3}{10}+\frac{-1}{5}=\frac{1}{10}\)
hôm sau mik giải tip cho
Chox,y,z>0,x+y+Z=2.Tim GTNN cua P=\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy - Schwarz dạng phân thức, ta có :
\(P=\)\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{\left(x+y+z\right)^2}{2x+2y+2z}=\frac{\left(x+y+z\right)^2}{2.\left(x+y+z\right)}=\frac{2^2}{2.2}=1\)
Dấu " = ' xảy ra \(\Leftrightarrow\)\(x=y=z\)
Vậy : \(MinP=1\)\(\Leftrightarrow x=y=z\)
tim x, y, z biet:
(x-y^2+z)^2+(y-2)^2+(z+3)^2=0