gia tri nho nhat cua bieu thuc : A = X +8X
tim gia tri nho nhat cua bieu thuc tim gia tri nho nhat cua bieu thuc x^4-4x^3+12x^2-16x+16
Tim gia tri cua x de bieu thuc A=|x-3|+(-100)co gia tri nho nhat ,tim gia tri nho nhat ay
Vì |x-3| luôn lớn bằng 0 với mọi x
=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x
=> A luôn lớn bằng 100
Dấu "=" xảy ra <=> |x-3| = 0
=> x - 3 = 0
=> x = 3
Vậy Min A = -100 <=> x = 3
Ta có |x - 3| > 0
=> |x - 3| + (-100) > - 100
hay A > 100
Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3
Tim gia tri nho nhat cua bieu thuc: P=|x|+7
(x€Z)
Tim gia tri lon nhat cua bieu thuc :Q=9-|x|
1) Ta có: P = |x| + 7 > hoặc = 7
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Min P = 7 khi và chỉ khi x = 0
2) Ta có: Q = 9 - |x| < hoặc = 9
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Max Q = 9 khi và chỉ khi x = 0
a)Ta có:\(\left|x\right|\ge0\Rightarrow P=\left|x\right|+7\)\(\ge7\)
Đẳng thức xảy ra khi: |x| = 0 => x = 0
Vậy giá trị nhỏ nhất của p là 7 khi x = 0
b) Ta có: \(\left|x\right|\ge0\Rightarrow-\left|x\right|\le0\Rightarrow Q=9-\left|x\right|=9+\left(-\left|x\right|\right)\le9\)
Đẳng thức xảy ra khi: -|x| = 0 => x = 0
Vậy giá trị lớn nhất của Q là 9 khi x = 0
1﴿ Ta có: P = |x| + 7 > hoặc = 7
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Min P = 7 khi và chỉ khi x = 0
2﴿ Ta có: Q = 9 ‐ |x| < hoặc = 9
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Max Q = 9 khi và chỉ khi x = 0
k nha bị âm r
tim gia tri nho nhat cua bieu thuc A =(x)+(8-x)
tim gia tri nho nhat cua bieu thuc A=(x-1)+(x-2017)
A=|x-1|+|x-2017|
=>A=|x-1|+|2017-x|
Áp dụng bất đẳng thức:|a|+|b| \(\ge\) |a+b|,dấu "=" xảy ra <=> ab \(\ge\) 0
Ta có: A=|x-1|+|2017-x| \(\ge\) |x-1+2017-x|=2016
=>AMin=2016
Dấu "=" xảy ra <=> (x-1)(2017-x) \(\ge\) 0
<=>1 \(\le\)x \(\le\) 2017
Vậy......................
gia tri nho nhat cua bieu thuc a=2*X+2015-3
gia tri nho nhat cua bieu thuc A=x^2+2x+5
A= x^2+2x +5
=x^2+2x+1+4
=(x+1)2 +4
=>Amin=4
\(A=x^2+2x+5=\left(x^2+2x+1\right)+4=\left(x^2+2.x.1+1^2\right)+4\)
\(=\left(x+1\right)^2+4\)
Vì \(\left(x+1\right)^2\ge0=>\left(x+1\right)^2+4\ge4\) (với mọi x)
Dấu "=" xảy ra \(< =>\left(x+1\right)^2=0< =>x=-1\)
Vậy minA=4 khi x=-1
a Tim gia tri nho nhat cua bieu thuc A = 31 - \(\sqrt{2x+7}\)
b , Tim gia tri lon nhat cua bieu thuc B = -9 + \(\sqrt{7+x}\)
Help me !!!
\(A=31-\sqrt{2x+7}\)
Ta có: điều kiện để có căn:\(\sqrt{2x+7}\) thì :\(2x+7\ge0\Rightarrow2x\ge-7\Rightarrow x\ge-3,5\)
Với mọi \(x\ge-3,5\) ta có:
\(\sqrt{2x+7}\ge0\)
\(\Rightarrow A=31-\sqrt{2x+7}\le31\)
Dấu "=" xảy ra khi:
\(\sqrt{2x+7}=0\Rightarrow2x=-7\Rightarrow x=-3,5\)
Vậy \(MAX_A=31\) khi \(x=-3,5\)
\(B=-9+\sqrt{7+x}\)
Ta có: điều kiện để có căn \(\sqrt{7+x}\) thì:
\(x\ge-7\)
Với mọi \(x\ge-7\) ta có:
\(\sqrt{7+x}\ge0\)
\(\Rightarrow-9+\sqrt{7+x}\ge-9\)
Dấu "=" xảy ra khi:
\(\sqrt{7+x}=0\Rightarrow x=-7\)
\(\Rightarrow MIN_B=-9\) khi \(x=-7\)
a, Sửa đề: Tìm GTLN của biểu thức
Vì \(\sqrt{2x+7}\ge0\) \(\Rightarrow-\sqrt{2x+7}\le0\)
\(\Rightarrow31-\sqrt{2x+7}\le31\)
Dấu ''='' xảy ra khi :
\(-\sqrt{2x+7}=0\Rightarrow2x+7=0\Rightarrow x=-3,5\)
Vậy \(A_{Max}=31\) khi và chỉ khi x = -3,5
b, Tìm GTNN của B
Giải: \(B=-9+\sqrt{7+x}=\sqrt{7+x}-9\)
Vì \(\sqrt{7+x}\ge0\Rightarrow\sqrt{7+x}-9\ge-9\)
Dấu ''='' xảy ra khi \(\sqrt{7+x}=0\Rightarrow x=-7\)
Vậy \(B_{Min}=-9\) khi x = -7
p/s: Lần sau gửi đề cẩn thận hơn ||^^
Tìm gia tri nho nhat cua bieu thuc A= x^2-x