cho tam giác ABC và d đi qua A, song song với BC. gọi B' là điểm đối xứng với B qua d. cmr AB+AC\(\ge\sqrt{a^2+4h^2}\)
Cho tam giác ABC vuông tại A, gọi M là trung điểm BC, N là trung điểm AC. Qua M kẻ đường thẳng song song với AC và cắt AB tại F. Từ C kẻ đường thẳng song song với AB và cắt MF tại E.
a. Tứ giác AFEC, AMEN là hình gì ? Vì sao ?
b. CMR: E đối xứng với F qua M
c. Gọi H là điểm đối xứng của M qua F. CMR: HF= 1/3 HE
d. Tam giác ABC có thêm điều kiện gì thì tứ giác AMBH là hình vuông ?
Cho tam giác ABC nhọn (AB <AC). Gọi D, F lần lượt là trung điểm của AB, BC . Lấy điểm G đối xứng với điểm D qua điểm F . a) Chứng minh rằng: tứ giác BDCG là hình bình hành. b) Qua A kẻ tia Ax song song với BC . Qua F kẻ tia Fy song song với AB . Gọi H là giao điểm của Ax và Fy . Chứng minh rằng: AF / /HC. c) Lấy điểm K trên đoạn thẳng HC sao cho: HK=1/3HC . Gọi I là trung điểm của AC . Gọi J là giao điểm của AF và DC . Chứng minh rằng: Ba điểm J, I, K thằng hàng.
a/
FB=FC (gt); FD=FG (gt) => BDCG là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
b/
Ax//BC => AH//FB
Fy//AB => FH//AB
=> ABFH là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> AH=FB (cạnh đối hbh); Mà FB=FC => AH=FC
Ta có Ax//BC => AH//FC
=> AFCH là hbh (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
=> AF//HC (cạnh đối hbh)
c/
DA=DB (gt)
FB=FC (gt)
=> J là trọng tâm của tg ABC \(\Rightarrow AJ=\dfrac{2}{3}AF\)
\(HK=\dfrac{1}{3}HC\Rightarrow CK=\dfrac{2}{3}HC\)
Ta có AFCH là hbh (cmt) =>AF=HC
=> AJ=CK (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
Ta có
AF//HC (cmt) => AJ//CK
=>AKCJ là hbh
Nối J với K cắt AC tại I'
=> I'A=I'C (trông hbh hai đường chéo cắt nhau tại trung điểm mỗi đường) => I' là trung điểm AC
Mà I cũng là trung điểm AC
\(\Rightarrow I'\equiv I\) => J; I; K thẳng hàng
BÀI 1: Cho tam giác ABC. Trên tia đối của tia BA lấy D, trên tia đối của tia CA lấy E sao cho BD = CE = BC. Gọi M là giao điểm của BE và CD đường thẳng qua M song song với tia phân giác của góc BAC cắt AC ở F. Chứng minh rằng AB = CF.
BÀI 2:Cho tam giác đều ABC, điểm M thuộc cạnh BC. Gọi D là điểm đối xứng với M qua AB, E là điểm đối xứng với M qua AC. Vẽ hình bình hành MDNE. CMR: AN // BC.
“““““` ✬ ‘✧ ‘✬
““““` __♜_♜_♜__
“““` `{,,,,,,,,,,,,,,,,,,,,,}
‘“` ✩`{✫//✰//✰//✫}` ✩
‘“` ♖_{♖___♖__♖___.♖}_♖
“` {///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“{//////////////////}
“{_✿__❀_♥_✿_♥_❀__✿_}
““““ * ` ` * ` ` *
‘““““ 0 ` ` 0 ` ` 0
““““ ||___||___||
““ * ` {,,,,,,,,,,,,,,,,,,,} ` *
““ 0 ` {////////} ` 0
‘“`_||_{_______”_____}_||_
“`{///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“`{///////////////}
“`{_____________”________}
cho abc tia phan giac cua goc b cat ac o d tren tia doi cua tia ba lay e sao cho be = bc chung minh bd song song ec cai nay lam sao
Cho tam giác ABC vuông tại A(AB < AC), AH là đường cao. Gọi E là điểm đối xứng của A qua BC, D là điểm đối xứng của B qua H, K là giao điểm của ED và AC , J là hình chiếu của D trên AB. Gọi I là trung điểm của AC. Đường thẳng kẻ từ C song song với AD cắt DI tại F. Chứng minh:
a)Tứgiác ABED là hình thoi.
b)Tứgiác AJDK là hình chữ nhật .
c) HJ vuông góc HK .
d)Tứgiác ADCF là hình bình hành.
e)Tứgiác ABCF là hình thang cân .
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). VẽHI vuông góc với cạnh AC tại I. Gọi E là điểm đối xứng của H qua I và D là điểm đối xứng của A qua I.
a)Tứgiác AHDE là hình gì? Vì sao?
b)VẽHM song song với cạnh AC (M thuộc AB). Chứng minh: AH bằng MI.
c)Gọi K là giao điểm của tia ED với cạnh BC. Chứng minh góc IEK bằng góc IKE.
b: Xét tứ giác AMHI có
AM//HI
HM//AI
Do đó: AMHI là hình bình hành
mà \(\widehat{MAI}=90^0\)
nên AMHI là hình chữ nhật
Suy ra: AH=MI
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). VẽHI vuông góc với cạnh AC tại I. Gọi E là điểm đối xứng của H qua I và D là điểm đối xứng của A qua I. a)Tứgiác AHDE là hình gì? Vì sao?b)VẽHM song song với cạnh AC (M thuộc AB). Chứng minh: AH bằng MI.c)Gọi K là giao điểm của tia ED với cạnh BC. Chứng minh góc IEK bằng góc IKE.
a: Xét tứ giác AHDE có
I là trung điểm của AD
I là trung điểm của HE
Do đó: AHDE là hình bình hành
mà AD⊥HE
nên AHDE là hình thoi
Cho tam giác ABC vuông tại A có AB<AC . M là trung điểm BC . gọi D là điểm đối xứng với A qua M,E là điểm đối xứng với A qua đường thẳng BC
a, chứng minh AC=BD
B, tu giac BCDE la hinh gi ?
c, gọi H là giao điểm AE và BC . vẽ tia Ax song song HD và cắt BC tại I . Chứng minh ĐI=EH
Bài 4.(2,5 điểm)Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). VẽHI vuông góc với cạnh AC tại I. Gọi E là điểm đối xứng của H qua I và D là điểm đối xứng của A qua I. a)Tứgiác AHDE là hình gì? Vì sao?b)VẽHM song song với cạnh AC (M thuộc AB). Chứng minh: AH bằng MI.c)Gọi K là giao điểm của tia ED với cạnh BC. Chứng minh góc IEK bằng góc IKE.
a: Xét tứ giác AHDE có
I là trung điểm của HE
I là trung điểm của AD
DO đó: AHDE là hình bình hành
mà DA⊥HE
nên AHDE là hình thoi