Tìm số nguyên x,y thỏa mãn : \(x^2+2y^2+3xy+2x+3y+4=0\)
1)Tìm x,y thỏa mãn:
x2-3xy+2y2 = 0 và 2x2 - 3xy + 5 = 0
2) Tìm x,y thỏa mãn:
(x-y)2 + 3(x-y) = 4 và 2x + 3y = 12
x^2 + 3xy + 2y^2 = 0
=> x^2 + xy + 2xy + 2y^2 = 0
=> x(x+y) + 2y ( x+ y ) = 0 =
=> ( x+ 2y)( x + y ) = 0
=> x = -2y hoặc x = -y
(+) x = -2y thay vào ta có :
8y^2 + 6y + 5 = 0 giải ra y => x
(+) thay x = -y ta có :
2y^2 - 3y + 5 = 0 tương tự
Tìm các số nguyên x và y thỏa mãn: x2+2y2+3xy+2x+2y-3=0
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
1, Tìm tất cả các số nguyên x, y thỏa mãn phương trình 2x ^ 2 + y ^ 2 + 3xy - 3x - 3y + 11 = 0
Ta có: \(2x^2+y^2+3xy-3x-3y+11=0\)
=>\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
\(\Delta=\left(3y-3\right)^2-4\cdot2\cdot\left(y^2-3y+11\right)\)
\(=9y^2-18y+9-8y^2+24y-88=y^2+6y-79\)
\(=y^2+6y+9-88=\left(y+3\right)^2-88\)
Để phương trình có nghiệm nguyên thì Δ phải là số chính phương
=>\(\left(y+3\right)^2-88=k^2\left(k\in Z\right)\)
=>\(\left(y+3\right)^2-k^2=88\)
=>(y+3-k)(y+3+k)=88
=>(y+3-k;y+3+k)∈{(1;88);(88;1);(-1;-88);(-88;-1);(2;44);(44;2);(-2;-44);(-44;-2);(4;22);(-4;-22);(22;4);(-22;-4);(8;11);(-8;-11);(11;8);(-11;-8)}
TH1: y+3-k=1 và y+3+k=88
=>y+3-k+y+3+k=1+88
=>2y+6=89
=>2y=83
=>y=41,5(loại)
TH2: y+3-k=88 và y+3+k=1
=>y+3-k+y+3+k=1+88
=>2y+6=89
=>2y=83
=>y=41,5(loại)
TH3: y+3-k=-1 và y+3+k=-88
=>=>y+3-k+y+3+k=-1-88
=>2y+6=-89
=>2y=-95
=>y=-47,5(loại)
TH4: y+3-k=-88 và y+3+k=-1
=>=>y+3-k+y+3+k=-1-88
=>2y+6=-89
=>2y=-95
=>y=-47,5(loại)
TH5: y+3-k=2 và y+3+k=44
=>y+3-k+y+3+k=2+44
=>2y+6=46
=>2y=40
=>y=20(nhận)
\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x^2+x\left(3\cdot20-3\right)+20^2-3\cdot20+11=0\)
=>\(2x^2+57x+351=0\)
=>\(\left(2x+39\right)\left(x+9\right)=0\)
=>\(\left[\begin{array}{l}2x+39=0\\ x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=-39\\ x=-9\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac{39}{2}\left(loại\right)\\ x=-9\left(nhận\right)\end{array}\right.\)
TH6: y+3-k=44 và y+3+k=2
=>y+3-k+y+3+k=2+44
=>2y+6=46
=>2y=40
=>y=20(nhận)
\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x^2+x\left(3\cdot20-3\right)+20^2-3\cdot20+11=0\)
=>\(2x^2+57x+351=0\)
=>\(\left(2x+39\right)\left(x+9\right)=0\)
=>\(\left[\begin{array}{l}2x+39=0\\ x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=-39\\ x=-9\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac{39}{2}\left(loại\right)\\ x=-9\left(nhận\right)\end{array}\right.\)
TH7: y+3-k=-2 và y+3+k=-44
=>y+3-k+y+3+k=-2-44
=>2y+6=-46
=>2y=-52
=>y=-26
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x^2+x\cdot\left\lbrack3\cdot\left(-26\right)-3\right\rbrack+\left(-26\right)^2-3\cdot\left(-26\right)+11=0\)
=>\(2x^2-81x+765=0\)
=>(x-15)(2x-51)=0
=>\(\left[\begin{array}{l}x-15=0\\ 2x-51=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{51}{2}\left(loại\right)\end{array}\right.\)
TH8: y+3-k=-44 và y+3+k=-2
=>y+3-k+y+3+k=-2-44
=>2y+6=-46
=>2y=-52
=>y=-26
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x^2+x\cdot\left\lbrack3\cdot\left(-26\right)-3\right\rbrack+\left(-26\right)^2-3\cdot\left(-26\right)+11=0\)
=>\(2x^2-81x+765=0\)
=>(x-15)(2x-51)=0
=>\(\left[\begin{array}{l}x-15=0\\ 2x-51=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{51}{2}\left(loại\right)\end{array}\right.\)
TH9: y+3-k=4 và y+3+k=22
=>y+3-k+y+3+k=4+22
=>2y+6=26
=>2y=20
=>y=10
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x_{}^2+x\left(3\cdot10-3\right)+10^2-3\cdot10+11=0\)
=>\(2x^2+27x+81=0\)
=>\(2x^2+18x+9x+81=0\)
=>(x+9)(2x+9)=0
=>\(\left[\begin{array}{l}x+9=0\\ 2x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-9\left(nhận\right)\\ x=-\frac92\left(loại\right)\end{array}\right.\)
TH10: y+3-k=22 và y+3+k=4
=>y+3-k+y+3+k=4+22
=>2y+6=26
=>2y=20
=>y=10
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x_{}^2+x\left(3\cdot10-3\right)+10^2-3\cdot10+11=0\)
=>\(2x^2+27x+81=0\)
=>\(2x^2+18x+9x+81=0\)
=>(x+9)(2x+9)=0
=>\(\left[\begin{array}{l}x+9=0\\ 2x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-9\left(nhận\right)\\ x=-\frac92\left(loại\right)\end{array}\right.\)
TH11: y+3-k=-4 và y+3+k=-22
=>y+3-k+y+3+k=-4-22
=>2y+6=-26
=>2y=-32
=>y=-16
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x_{}^2+x\cdot\left\lbrack3\cdot\left(-16\right)-3\right\rbrack+\left(-16\right)^2-3\cdot\left(-16\right)+11=0\)
=>\(2x^2-51x+315=0\)
=>\(2x^2-30x-21x+315=0\)
=>(x-15)(2x-21)=0
=>\(\left[\begin{array}{l}x-15=0\\ 2x-21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{21}{2}\left(loại\right)\end{array}\right.\)
TH12: y+3-k=-22 và y+3+k=-4
=>y+3-k+y+3+k=-4-22
=>2y+6=-26
=>2y=-32
=>y=-16
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x_{}^2+x\cdot\left\lbrack3\cdot\left(-16\right)-3\right\rbrack+\left(-16\right)^2-3\cdot\left(-16\right)+11=0\)
=>\(2x^2-51x+315=0\)
=>\(2x^2-30x-21x+315=0\)
=>(x-15)(2x-21)=0
=>\(\left[\begin{array}{l}x-15=0\\ 2x-21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{21}{2}\left(loại\right)\end{array}\right.\)
TH13: y+3-k=8 và y+3+k=11
=>y+3-k+y+3+k=8+11
=>2y+6=19
=>2y=13
=>y=6,5(loại)
TH14: y+3-k=11 và y+3+k=8
=>y+3-k+y+3+k=8+11
=>2y+6=19
=>2y=13
=>y=6,5(loại)
TH15: y+3-k=-8 và y+3+k=-11
=>y+3-k+y+3+k=-8-11
=>2y+6=-19
=>2y=-25
=>y=-12,5(loại)
TH16: y+3-k=-11 và y+3+k=-8
=>y+3-k+y+3+k=-8-11
=>2y+6=-19
=>2y=-25
=>y=-12,5(loại)
1/tìm các cặp số nguyên (x;y) thỏa mãn:\(5x^2+2xy+y^2-4x-40=0\)0
2/tìm các số nguyên x;y thỏa mãn:\(3xy+x+15y-44=0\)
3/gtp nghiệm nguyên :\(2x^2+3xy-2y^2=7\)
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
Tìm các số nguyên x, y thỏa mãn đẳng thức:
2x2+y2+3xy+3x+2y+2=0
Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn: \(^{x^2+2y^2-3xy+2x-4y+3=0}\)
1,Tìm các số nguyên x,y thỏa mãn \(x^2y^2-x^2-3y^2-2x-1=0\).
2,Tìm các số nguyên x,y thỏa mãn \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\) để cho tích xy đạt giá trị lớn nhất.
Câu 1: Tìm x,y thỏa mãn : x2 + 5y2 - 4xy + 6x - 22y + 34 = 0
Câu 2: Tìm (x;y) nguyên thỏa mãn : 2x2 + 3xy - 2y2 = 7