Tìm M:
1.4+4.7+7.10+............+31.34+34.37
Tìm x, biết:
\(\dfrac{3}{1.4}\)x + \(\dfrac{3}{4.7}\)x + \(\dfrac{3}{7.10}\)x +...+ \(\dfrac{3}{31.34}\)x = 33
\(\dfrac{3}{1\times4}x+\dfrac{3}{4\times7}x+\dfrac{3}{7\times10}x+...+\dfrac{3}{31\times34}x=33\)
\(x\left(\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+...+\dfrac{3}{31\times34}\right)=33\)
\(x\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)=33\)
\(x\left(1-\dfrac{1}{34}\right)=33\)
\(\dfrac{33}{34}x=33\)
\(x=34\)
\(\dfrac{3}{1.4}x+\dfrac{3}{4.7}x+\dfrac{3}{7.10}x+...+\dfrac{3}{31.34}x=33\)
\(x.3\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{31.34}\right)=33\)
\(x.3.\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)=33\)
\(x.\left(1-\dfrac{1}{34}\right)=33\)
\(x.\dfrac{33}{34}=33\)
\(x=33:\dfrac{33}{34}=33.\dfrac{34}{33}\)
\(x=34\)
tính nhanh E= 2/1.4 - 2/4.7 + 2/7.10+...+ 2/31.34
\(E=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{31.34}\)
\(E=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{31.34}\right)\)
\(E=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{31}-\frac{1}{34}\right)\)
\(E=\frac{2}{3}\left(1-\frac{1}{34}\right)\)
\(E=\frac{2}{3}.\frac{33}{34}\)
\(E=\frac{11}{17}\)
tính
1/1.4+1/4.7 +1/7.10 +.....+1/31.34
=
1/1.4 + 1/4.7 + 1/7.10 + ... + 1/31.34
= 1/3 . ( 3/1.4 + 3/4.7 + 3/7.10 + .... + 3/31.34 )
= 1/3 . ( 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/31 - 1/34 )
= 1/3 . ( 1 - 1/34 )
= 1/3 . 33/34
= 11/34
A=1.4+4.7+7.10+10.13+...+31.34+34.37
2. 2 thành phố A &B cách nhau 186 km . lúc 6 giờ , xe máy đi từ A đến B với vận tốc 30 km/ h. lúc 7h , 1 xe máy đi từ B đến A với vận tốc 35km / h. hỏi sau mấy giờ 2 xe gặp nhau và chỗ gặp cách A bao nhiêu km
Giúp mới, nhớ trình bày lời giải
6. Tính
\(A=\dfrac{4}{1.4}+\dfrac{4}{4.7}+\dfrac{4}{7.10}+...+\dfrac{4}{31.34}\)
\(B=1-5+5^2-5^3+5^4-...-5^{39}\)
a) Ta có: \(A=\dfrac{4}{1\cdot4}+\dfrac{4}{4\cdot7}+\dfrac{4}{7\cdot10}+...+\dfrac{4}{31\cdot34}\)
\(=\dfrac{4}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{31\cdot34}\right)\)
\(=\dfrac{4}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)\)
\(=\dfrac{4}{3}\left(1-\dfrac{1}{34}\right)\)
\(=\dfrac{4}{3}\cdot\dfrac{33}{34}=\dfrac{22}{17}\)
Tính nhanh:
a) \(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{31.34}\)
b) \(B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{100.101.102}\)
Tính tổng
C = \(\frac{2}{1.4}\) + \(\frac{2}{4.7}\) + \(\frac{2}{7.10}\) + ........ + \(\frac{2}{31.34}\)
Giúp mình với
\(C=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{31.34}\)
\(C=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{31.34}\right)\)
\(C=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{31}-\frac{1}{34}\right)\)
\(C=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{34}\right)\)
\(C=\frac{2}{3}.\frac{33}{34}\)
\(C=\frac{11}{17}\)
\(C=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{31.34}\)
\(=\frac{2}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{31.34}\right)\)
\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{31}-\frac{1}{34}\right)\)
\(=\frac{2}{3}\left(1-\frac{1}{34}\right)=\frac{2}{3}.\frac{33}{34}=\frac{11}{17}\)
E=1.4+4.7+7.10+...+97.100
Tìm E
1.
a) 1/1.4+1/4.7+1/7.10+...+1/100.103
b)-1/3+-1/15+-1/35+-1/63+...+-1/9999
2.
3/1.4+3/4.7+3/7.10+...+3/94.97+3/97.100
`#3107.101107`
1.
a)
`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`
`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`
`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`
`= 1/3* (1 - 1/103)`
`= 1/3*102/103`
`= 34/103`
b)
`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`
`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`
`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`
`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`
`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`
`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`
`= -1/2 * (1 - 1/101)`
`= -1/2*100/101`
`= -50/101`
2.
`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`
`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`
`= 1-1/100`
`= 99/100`