Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hoàng Thảo Nhi
Xem chi tiết
Hắc Hường
14 tháng 6 2018 lúc 21:40

Giải:

\(\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-\dfrac{1}{97.96}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(=-\left(-\dfrac{1}{99}+\dfrac{1}{99.98}+\dfrac{1}{98.97}+\dfrac{1}{97.96}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)

\(=-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}-\dfrac{1}{99}\right)\)

\(=-\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}-\dfrac{1}{99}\right)\)

\(=-\left(\dfrac{1}{1}-\dfrac{1}{99}-\dfrac{1}{99}\right)\)

\(=-\dfrac{97}{99}\)

Vậy ...

Lynko Nguyen
Xem chi tiết
nguyễn phương thảo
Xem chi tiết
Lê Minh Vũ
13 tháng 10 2021 lúc 10:21

\(E=\frac{1}{99}-\frac{1}{99.98}-\frac{1}{97.96}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\)\(\frac{1}{99}-\left(\frac{1}{1.2}+...+\frac{1}{98.99}\right)\)

\(=\)\(\frac{1}{99}-\left(1-\frac{1}{2}+...+\frac{1}{98}-\frac{1}{99}\right)\)

\(=\)\(\frac{1}{99}-\left(1-\frac{1}{99}\right)\)

\(=\)\(\frac{2}{99}-1\)

\(=\)\(-\frac{97}{99}\)

Khách vãng lai đã xóa
Lynko Nguyen
Xem chi tiết
Tống Nhã Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 17:49

=-1/99-(1-1/2+1/2-1/3+...+1/98-1/99)

=-2/99+1=97/99

phạm minh anh
Xem chi tiết
Hồ Thu Giang
25 tháng 8 2015 lúc 18:02

\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-\frac{1}{97.96}+......+\frac{1}{2.1}\)

\(\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}\right)\)

\(\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{98}-\frac{1}{99}\right)\)

\(\frac{1}{99}-\left(1-\frac{1}{99}\right)\)

\(\frac{1}{99}-\frac{98}{99}\)

\(\frac{-97}{99}\)

Jeon JungKook
Xem chi tiết
Kaori Miyazono
9 tháng 5 2017 lúc 18:06

\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-\frac{1}{97.96}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+\frac{1}{97.96}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

\(=\frac{1}{99}-\left(\frac{1}{99}-\frac{1}{98}+\frac{1}{98}-\frac{1}{97}+\frac{1}{97}-\frac{1}{96}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-\frac{1}{1}\right)\)

\(=\frac{1}{99}-\left(\frac{1}{99}-1\right)=\frac{1}{99}-\frac{1}{99}+1=1\)

Anime cute
9 tháng 5 2017 lúc 18:29

=1 nha bn, chắc vậy

Hỏi toán
23 tháng 9 lúc 10:58

mình hỏi câu này chứng minh 1+1=2

Nguyễn Thuỳ Linh
Xem chi tiết
Trí Tiên亗
23 tháng 2 2020 lúc 22:39

\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+\frac{1}{97}-....-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)

\(\frac{1}{99}+1=\frac{100}{99}\)

Khách vãng lai đã xóa

\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-\frac{1}{97.96}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=-\left(\frac{1}{99}+\frac{1}{99.98}+\frac{1}{98.97}+\frac{1}{97.96}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

\(=-\left(\frac{1}{99}-\frac{1}{98}+\frac{1}{98}-\frac{1}{97}+\frac{1}{97}-\frac{1}{96}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\right)\)

\(=-\left(\frac{1}{99}-1\right)\)

\(=-\frac{98}{99}\)

Khách vãng lai đã xóa

cho mk sửa dòng thứ hai:

\(=\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{96}-\frac{1}{97}+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)

Từ đó bn làm tiếp nha

sorry mn

Khách vãng lai đã xóa
Phucson Nguyen
Xem chi tiết
Ngọc Mai
23 tháng 8 2017 lúc 20:14

\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\right)\)

\(=\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)

\(=\frac{1}{99}-\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{99}-\frac{98}{99}\)

\(=-\frac{97}{99}\)

Ủng hộ !