Tìm GTNN của biểu thức sau:
A=2x^2 + 9y^2 - 6xy + 12y + 2004
Giúp mk vs
tìm GTNN của biểu thức: A= 2x2 + 9y2 - 6xy - 6x - 12y + 2004
Tìm GTNN của biểu thức sau:
M=2x^2+9y^2-6xy-6x-12y+2028
N=x^2-4xy+5y^2+10x-22y+28
Giúp mk với
\(M=2x^2+9y^2-6xy-6x-12y+2028\\ =3\left(x^2-2xy+y^2\right)-\left(x^2+6x+9\right)+6\left(y^2-2y+1\right)+2025\\ =\left(x-y\right)^2-\left(x-3\right)^2+6\left(y-1\right)^2+2025\ge2025\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=3\\y=1\end{matrix}\right.\) (vô lí) nên dấu \("="\) ko thể xảy ra
\(N=x^2-4xy+5y^2+10x-22y+28\\ =\left(x^2+4y^2+25-4xy-20y+10x\right)+\left(y^2-2y+1\right)+2\\=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-2y=5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
\(M=2x^2+9y^2-6xy-6x-12y+2028=\left(x+2\right)^2-6y\left(x+2\right)+9y^2+\left(x-5\right)^2+1999=\left(x+2-3y\right)^2+\left(x-5\right)^2+2019\ge1999\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=\dfrac{7}{3}\end{matrix}\right.\)
\(N=x^2-4xy+5y^2+10x-22y+28=\left(x+5\right)^2-4y\left(x+5\right)+4y^2+\left(y-1\right)^2+2=\left(x+5-2y\right)^2+\left(y-1\right)^2+2\ge2\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
tìm GTNN của đa thức sau A=2x2+9y2-6xy-6x-12y+2004
tìm GTNN của biểu thức 2x\(^2\) + 9y\(^2\) - 6xy - 6x - 12y + 2004
Tìm GTNN của: 2x2+9y-6xy-6x-12y+2004
Tìm GTNN :2x^2 +9y^2-6xy-6x-12y+2004
\(2x^2+9y^2-6xy-6x-12y+2004\)
\(=x^2-10x+25+x^2+9y^2+4-6xy+4x-12y+1975\)
\(=\left(x-5\right)^2+\left(x-3y+2\right)^2+1975\ge1975\)
Dấu \(=\)khi \(\hept{\begin{cases}x-5=0\\x-3y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\).
Tìm GTLN (GTNN) của:
\(A=-x^2+2xy-4y^2+2x+10y-8\)
\(B=2x^2+9y^2-6xy-6x-12y+2004\)
giúp mk với
A = -x2 + 2xy - 4y2 + 2x + 10y - 8
=> -A = x2 - 2xy + 4y2 - 2x - 10y + 8
= ( x2 - 2xy + y2 - 2x + 2y + 1 ) + ( 3y2 - 12y + 12 ) - 5
= [ ( x2 - 2xy + y2 ) - ( 2x - 2y ) + 1 ] + 3( y2 - 4y + 4 ) - 5
= [ ( x - y )2 - 2( x - y ) + 1 ] + 3( y - 2 )2 - 5
= ( x - y - 1 )2 + 3( y - 2 )2 - 5 ≥ -5 ∀ x, y
Dấu "=" xảy ra <=> x = 3 ; y = 2
=> -A ≥ -5
=> A ≤ 5
=> MaxA = 5 <=> x = 3 ; y = 2
B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004
= ( x2 - 6xy + 9y2 + 4x - 12y + 4 ) + ( x2 - 10x + 25 ) + 1975
= [ ( x2 - 6xy + 9y2 ) + ( 4x - 12y ) + 4 ] + ( x - 5 )2 + 1975
= [ ( x - 3y )2 + 2( x - 3y ).2 + 22 ] + ( x - 5 )2 + 1975
= ( x - 3y + 2 )2 + ( x - 5 )2 + 1975 ≥ 1975 ∀ x, y
Dấu "=" xảy ra <=> x = 5 ; y = 7/3
=> MinB = 1975 <=> x = 5 ; y = 7/3
Ta có: A = -x2 + 2xy - 4y2 + 2x + 10y - 8
A = -[x2 - 2xy + 4y2 - 2x - 10y + 8]
A = -[(x2 - 2xy + y2) - 2(x + y) + 1 + 3y2 - 12y + 12 - 5]
A = -[(x - y)2 - 2(x + y) + 1 + 3(y - 2)2]+ 5
A = -[(x - y - 1)2 + 3(y - 2)2] + 5 \(\le\) 5 với mọi x
Dấu "=" xảy ra <=> x - y - 1 = 0 và y + 2 = 0
=>x = -1 và y = -2
Vậy MaxA = 5 khi x = -1 và y = -2
B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004
B = (x2 - 6xy + 9y2) + 4(x - 3y) + 4 + x2 - 10x + 25 + 1975
B = (x - 3y + 2)2 + (x - 5)2 + 1975 \(\ge\)1975
đoạn cuối tt trên
tìm giá trị nhỏ nhất của biểu thức: D=2x2 + 9y2 - 6xy - 6x - 12y + 2004
F = 2x2 + 9y2 - 6xy - 6x - 12y + 2024 Tìm GTNN của biểu thức ấy
Giúp mình vss
Nhân thêm 2 vào F là mọi việc sẽ ez bởi hằng đẳng thức cơ bản:D