Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Công Minh Hoàng
Xem chi tiết
Mai Thành Đạt
Xem chi tiết
Hoàng Lê Bảo Ngọc
14 tháng 6 2016 lúc 20:29

\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{c-b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{a-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{b-a}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{c-b+b-a+a-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

Thủy Phạm Thanh
Xem chi tiết
Đinh Đức Hùng
27 tháng 11 2017 lúc 13:52

\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)

\(\frac{b-c-a+c+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{0}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)

Tèo Thị Bé Bảy
Xem chi tiết
HÀ Hanna
Xem chi tiết
Liễu Nguyễn Thị
Xem chi tiết
Hoàng Lê Bảo Ngọc
16 tháng 8 2016 lúc 22:35

a) \(P=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ac}{\left(b-c\right)\left(b-a\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)

Đặt \(x=\frac{b}{c-a},y=\frac{c}{a-b},z=\frac{a}{b-c}\) , suy ra : \(P=-xy-yz-xz\)

Lại có : \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=\left(x+1\right)\left(y+1\right)\left(z+1\right)\)

\(\Rightarrow xy+yz+xz=-1\Rightarrow P=1\)

 

Hoàng Lê Bảo Ngọc
16 tháng 8 2016 lúc 22:39

\(Q=\frac{\left[\left(x+\frac{1}{x}\right)^2\right]^3-\left(x^3+\frac{1}{x^3}\right)^2}{\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)}=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\)

\(=3x+\frac{3}{x}=3\left(x+\frac{1}{x}\right)\)

Xem chi tiết
Minh Nguyen
Xem chi tiết
nguyễn ngọc phương linh
Xem chi tiết
Rin
Xem chi tiết
Phước Nguyễn
30 tháng 11 2015 lúc 22:44

\(a.\) Với  \(a+b+c=0\)  thì  \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=\frac{-abc}{abc}=-1\)

\(b.\)   Công thức tổng quát:  \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Ta có:

\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)

\(\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{1}{x+1}-\frac{1}{x+2}\)

\(\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{1}{x+2}-\frac{1}{x+3}\)

\(\frac{1}{\left(x+3\right)\left(x+4\right)}=\frac{1}{x+3}-\frac{1}{x-4}\)

\(\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+4}-\frac{1}{x+5}\)

Do đó, suy ra được:  \(A=\frac{1}{x}-\frac{1}{x+5}=\frac{x+5-x}{x\left(x+5\right)}=\frac{5}{x\left(x+5\right)}\)