Cho tam giác ABC và G là trọng tâm thì có :vecto BG=\(\frac{2}{3}BD\)(vecto BD)
Cho tam giác ABC có trung tuyến BM và trọng tâm G . Phân tích vecto BG theo hai vecto BA và vecto BC
\(\overrightarrow{BG}=\dfrac{2}{3}\overrightarrow{BM}=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BC}\)
Tam giác ABC biết A ( 2,1); B(5,2); C(-4,3)
- Tìm M sao cho: vecto CM+ 3 vecto AM= 2 vecto BM
- Tìm D thuộc trục Ox để ABCD thang đáy AB; DC
- G trọng tâm tam giác ABC. Tìm E thuộc d: y= 2x-1 để A,G,E thẳng hàng
- Tìm tâm đường tròn ngoại tiếp ABC và chân đường phân giác trong của góc A; tìm tâm đường tròn nội tiếp ABC
a: vecto CM=(x+4;y-3)
vecto AM=(x-2;y-1)
vecto BM=(x-5;y-2)
Theo đề, ta có: x-4+3x-6=2x-10 và y-3+3y-3=2y-4
=>4x-10=2x-10 và 4y-6=2y-4
=>x=0 và y=1
b:
D thuộc Ox nên D(x;0)
vecto AB=(3;1)
vecto DC=(-4-x;3)
Theo đề, ta có: 3/-x-4=1/3
=>-x-4=9
=>-x=13
=>x=-13
chứng minh gấp hộ tui với
Cho tam giác ABC:
a) Nếu G là trọng tâm tam giác ABC thì vecto GA+ vecto GB+ vecto GC= vecto 0
b) Nếu vecto IA+ vecto IB + vecto IC = vecto 0 thì I là trọng tâm tam giác ABC
TUI CẦN GẤP CHO BUỔI DỰ GIỜ NGÀY MAI NÊN AI ĐÓ GIÚP TUI ZỚIIII~~~
mk bận đi ch nên chỉ tạm câu a nha
vẽ 3 đường trung tuyến AD ; BE ; CF
VT =
\(GA+GB+GC\) ( nhớ thêm dấu vec tơ nha )
\(=-\frac{2}{3}AD-\frac{2}{3}BE-\frac{2}{3}CF\)
\(=-\frac{2}{3}\cdot\frac{1}{2}\left(AB+BC\right)-\frac{2}{3}\cdot\frac{1}{2}\left(BA+BC\right)-\frac{2}{3}\cdot\frac{1}{2}\left(CA+CB\right)\) ( quy tắc hình bình hành )
\(=-\frac{1}{3}\left(AB+AC\right)-\frac{1}{3}\left(BA+BC\right)-\frac{1}{3}\left(CA+CB\right)\)
\(=-\frac{1}{3}AB-\frac{1}{3}AC-\frac{1}{3}BA-\frac{1}{3}BC-\frac{1}{3}CA-\frac{1}{3}CB\)
\(=0=VP\)
cho tam giác ABC .gọi M là trung điểm của BC và G là trọng tâm tam giác Kéo dài GM một đoạn MD=GM .
a) chứng minh vecto BD =vecto GC : vecto BG =vecto DC
b) tìm ác vecto đối nhau trên hình
a: Xét tứgiác BGCD có
Mlà trung điểm của BC
M là trung điểm của GD
Do đó; BGCD là hình bình hành
Suy ra: vecto BD=vecto GC, vecto BG=vecto DC
b: vecto MC và vecto MB là hai vecto đối nhau
vecto MG và vecto MD là hai vecto đối nhau
Cho tam giác ABC có trung tuyến AD, trọng tâm G, I là trung điểm AG, K thuộc đoạn AB. AK=1/5 AB, phân tích các vecto sau qua vecto CA, vecto CB a. Vecto AI b. Vecto AK c. Vecto CI d. Vecto CK
Do G là trọng tâm tam giác
\(\Rightarrow\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AD}=\dfrac{2}{3}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}=\dfrac{1}{3}\overrightarrow{AC}+\dfrac{1}{3}\overrightarrow{CB}+\dfrac{1}{3}\overrightarrow{AC}\)
\(=\dfrac{2}{3}\overrightarrow{AC}+\dfrac{1}{3}\overrightarrow{CB}=-\dfrac{2}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CB}\)
Do I là trung điểm AG
\(\Rightarrow\overrightarrow{AI}=\dfrac{1}{2}\overrightarrow{AG}=\dfrac{1}{2}\left(-\dfrac{2}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CB}\right)=-\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{6}\overrightarrow{CB}\)
\(\overrightarrow{AK}=\dfrac{1}{5}\overrightarrow{AB}=\dfrac{1}{5}\left(\overrightarrow{AC}+\overrightarrow{CB}\right)=-\dfrac{1}{5}\overrightarrow{CA}+\dfrac{1}{5}\overrightarrow{CB}\)
\(\overrightarrow{CI}=\overrightarrow{CA}+\overrightarrow{AI}=\overrightarrow{CA}-\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{6}\overrightarrow{CB}=\dfrac{2}{3}\overrightarrow{CA}+\dfrac{1}{6}\overrightarrow{CB}\)
\(\overrightarrow{CK}=\overrightarrow{CA}+\overrightarrow{AK}=\overrightarrow{CA}-\dfrac{1}{5}\overrightarrow{CA}+\dfrac{1}{5}\overrightarrow{CB}=\dfrac{4}{5}\overrightarrow{CA}+\dfrac{1}{5}\overrightarrow{CB}\)
giải hộ mình với. Mn viết rõ đủ vì mình làm nộp hôm dự giờ ạ
Cho tam giác ABC
a) Nếu G là trọng tâm tam giác ABC thì vecto GA+ GB+GC = vecto 0
b) Nếu vecto IA+IB+IC=vecto 0 thì I là trọng tâm tam giác ABC
Cho tam giác ABC có trọng tâm G, E đối xứng với A qua C . D,E,F là trung điểm của AB,BC,DE
chứng minh vecto GF = 2/3 vecto AC trừ 1/12 vecto AB
trong mặt phẳng tọa độ Oxy cho A(2;4);B(1;1);C(1;-3)
1.a)xác định tọa độ điểm M sao cho vecto MA- vecto CB =2 lần vecto MC.
b)tìm tọa độ điểm D thuộc trục Ox sao cho tam giác ABD vuông tại B.
2.cho tam giác ABC có AB=2 ;CA=3.gọi G là trọng tâm tam giác ABC .tính tích vecto AG và BC.
giúp mk nha 5 sao cho người nhanh nhất
có ai biết cách làm thì giúp mk với mai mk cần lắm rồi
Cho tam giác ABC có trọng tâm G Gọi I và J lần lượt là hai điểm thỏa mãn vectơ IB = vectơ BA , vecto JA= -2/3 vecto JC . CM: vecto IJ=2/5 vecto AC - 2 vecto AB
Ta có \(\overrightarrow{IB}=\overrightarrow{BA}\Rightarrow\hept{\begin{cases}I\in AB\\\overrightarrow{AI}=2\overrightarrow{AB}\end{cases}}\). Tương tự \(\hept{\begin{cases}J\in\left[AC\right]\\\overrightarrow{AJ}=\frac{AJ}{AC}\overrightarrow{AC}=\frac{2}{5}\overrightarrow{AC}\end{cases}}\)
Do đó \(\overrightarrow{IJ}=\overrightarrow{AJ}-\overrightarrow{AI}=\frac{2}{5}\overrightarrow{AC}-2\overrightarrow{AB}\)(đpcm).
giải giúp t câu này nha : tính vecto IG theo vecto AB và vecto AC (các b vẽ hình ra hộ t nhé)
cho tam giác ABC có trọng tâm G và N là điểm thỏa mãn vectơ AN = vectơ GC. Hãy xác định vị trí điểm N.