cho a, b là các số dương thỏa mãn a+b \(\le\)1. Tìm Min của : \(a^2+\frac{1}{a}+b^2+\frac{1}{b}\)
Cho a, b là các số thực dương thỏa mãn a+b\(\le\)1. Tìm Min \(a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}\)
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
cho các số thực dương a,b,c thỏa mãn \(a+b+c\le\frac{3}{2}\)
tìm min B=\(\left(3+\frac{1}{a}+\frac{1}{b}\right)\left(3+\frac{1}{b}+\frac{1}{c}\right)\left(3+\frac{1}{c}+\frac{1}{a}\right)\)
\(\text{⋄}\)Dễ có: \(B\ge\left(3+\frac{4}{a+b}\right)\left(3+\frac{4}{b+c}\right)\left(3+\frac{4}{c+a}\right)\)
\(\text{⋄}\)Đặt \(b+c=x;c+a=y;a+b=z\left(x,y,z>0\right)\)thì \(a=\frac{y+z-x}{2};b=\frac{z+x-y}{2};c=\frac{x+y-z}{2}\)
Giả thiết được viết lại thành: \(x+y+z\le3\)và ta cần tìm giá trị nhỏ nhất của \(\left(3+\frac{4}{x}\right)\left(3+\frac{4}{y}\right)\left(3+\frac{4}{z}\right)\)
\(\text{⋄}\)Ta có: \(\left(3+\frac{4}{x}\right)\left(3+\frac{4}{y}\right)\left(3+\frac{4}{z}\right)=27+36\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+48\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+\frac{64}{xyz}\)\(\ge27+36.\frac{9}{x+y+z}+48.\frac{27}{\left(x+y+z\right)^2}+64.\frac{27}{\left(x+y+z\right)^3}\ge343\)
Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c = 1/2
Cho a,b,c là các số dương thỏa mãn \(a+b+c\le3\).Tìm Min của A=\(\frac{a}{1+a^2}+\frac{b}{1+b^2}+\frac{c}{1+c^2}\)
1/tìm số n nguyên dương thỏa mãn
\(\sqrt{\left(3+2\sqrt{2}\right)^n}+\sqrt{\left(3-2\sqrt{2}\right)^n}=6\)
2/ cho a, b là các số dương thỏa mãn \(1\le a\le b\le2\)
tìm GTLN của \(A=\frac{a}{b}+\frac{b}{a}\)
Cho các số thực dương a,,b,c thỏa mãn a+b+c=3
Tìm min của P = \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{a^2+b^2+c^2}\)
Áp dụng BĐT AM-GM ta có :
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)
\(=\frac{9}{abc\left(a+b+c\right)}\ge\frac{27}{\left(ab+bc+ca\right)^2}\)
Mặt khác theo BĐT AM-GM có :
\(\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\le\left(\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)^3}{3}\right)=27\)
\(\Rightarrow\frac{27}{\left(ab+bc+ca\right)^2}\ge a^2+b^2+c^2\)
Đặt \(t=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=3\)
Xét \(t+\frac{1}{t}=\frac{1}{9}+\frac{1}{t}+\frac{81}{9}.3=\frac{10}{3}\)
Vậy \(MinP=\frac{10}{3}\Leftrightarrow a=b=c=-1\)
Sửa lại chút , vội quá nên đánh lỗi .
Xét \(t+\frac{1}{t}=\frac{1}{9}+\frac{1}{t}+\frac{8t}{9}\ge2\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8}{9}.3=\frac{10}{3}\)
\(\Rightarrow MinP=\frac{10}{3}\Leftrightarrow a=b=c=1\)
tính hộ 1 chia 0 nha
2.Cho a,b,c,d là các số thực dương thỏa mãn a2 + b2 + c2 = 1. Chứng minh: \(\frac{1}{b^2+c^2}+\frac{1}{c^2+a^2}+\frac{1}{a^2+b^2}\le\frac{a^3+b^3+c^3}{2abc}+3\) 1. Cho các số dương a,b,c thỏa mãn a+b+c=1. Chứng minh \(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\ge1\)
\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)
Tương tự cộng lại quy đồng ta có đpcm
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
cho a;b;c là các số thực dương thỏa mãn abc=1.Tìm Min của \(P=\frac{a^2}{\left(a+1\right)\left(b+1\right)bc}+\frac{b^2}{\left(b+1\right)\left(c+1\right)ca}+\frac{c^2-a^2b-ab-a-1}{\left(c+1\right)\left(a+1\right)ab}\)
\(P=\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(b+1\right)\left(c+1\right)}+\frac{c^3}{\left(c+1\right)\left(a+1\right)}-1\)
\(P=\frac{a^3}{\left(a+1\right).\left(b+1\right)}+\frac{b^3}{\left(b+1\right).\left(c+1\right)}+\frac{c^3}{\left(c+1\right).\left(a+1\right)}\)
Ko biết đúng hay không!
Mới lớp 6 , mà tôi nghĩ Lầy Văn Lội đúng đấy!
Cho các số dương a,b thỏa mãn điều kiện \(\frac{1}{a}+\frac{1}{b}\le\frac{1}{2}\).Tìm giá trị nhỏ nhất của biểu thức \(M=\sqrt{a}+\sqrt{b}-\frac{1}{a+b}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm min
M=\(\frac{9}{1-2\left(ab+bc+ca\right)}+\frac{2}{abc}\)
Ta co:
\(M=\frac{9}{1-2\left(ab+bc+ca\right)}+\frac{2}{abc}=\frac{9}{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}+\frac{2}{abc}=\frac{9}{a^2+b^2+c^2}+\frac{2}{abc}\)
Ta lai co:
\(a+b+c=1\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{1}{abc}\)
\(\Rightarrow M=\frac{9}{\Sigma_{cyc}a^2}+\Sigma_{cyc}\frac{2}{ab}\ge\frac{9}{\Sigma_{cyc}a^2}+\frac{18}{\Sigma_{cyc}ab}\left(1\right)\)
\(VT_{\left(1\right)}=\frac{9}{\Sigma_{cyc}a^2}+\frac{1}{\Sigma_{cyc}ab}+\frac{1}{\Sigma_{cyc}ab}+\frac{16}{\Sigma_{cyc}ab}\ge\frac{\left(3+1+1\right)^2}{\Sigma_{cyc}a^2+2\Sigma_{cyc}ab}+\frac{16}{\frac{\left(\Sigma_{cyc}a\right)^2}{3}}=\text{ }\frac{25}{\left(\Sigma_{cyc}a\right)^2}+48=\text{ }73\)
Dau '=' xay ra khi \(\text{ }a=b=c=\frac{1}{3}\)
@my-friend
\(M\ge\frac{9}{a^2+b^2+c^2}+\frac{36}{2\left(ab+bc+ca\right)}\ge\frac{\left(3+6\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=81\)
Dấu "=" xảy ra ra khi \(\hept{\begin{cases}\frac{3}{a^2+b^2+c^2}=\frac{6}{2\left(ab+bc+ca\right)}\\a+b+c=1\end{cases}}\Leftrightarrow a=b=c=\frac{1}{3}\)
Trước hết dễ có: \(\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\ge abc\)
\(\Rightarrow abc\le\frac{ab+bc+ca}{9}=t\) (với \(0< t=\frac{ab+bc+ca}{9}\le\frac{\left(a+b+c\right)^2}{27}=\frac{1}{27}\))
Do đó \(M\ge\frac{9}{1-18t}+\frac{2}{t}=\frac{2\left(27t-1\right)^2}{t\left(1-18t\right)}+81\ge81\forall0< t\le\frac{1}{27}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)