So sánh
A=2002x2006 B=2003x2004
So sánh :
A= 2003x2004-1 / 2003x2004 và B=2004x2005-1 / 2004x2005
A=2003x2004-1/2003x2004
B=2004x2005-1/2004x2005
A= 1-2003x2004-1/2003x2004=1/2003x2004
B=1-2004x2005-1/2004x2005=1/2004x2005
Vì 1/2003x2004<1/2004x2005 => A>B.
K nhé
So sánh A và B biết:
A=\(\frac{2003x2004-1}{2003x2004}\)và B=\(\frac{2004x2005-1}{2004x2005}\)
đề bài : so sánh
2003x2004-1/2003x2004 với 2004x2005-1/2004x2005
ta có: \(\frac{2003\times2004-1}{2003\times2004}=\frac{2003\times2004}{2003\times2004}-\frac{1}{2003\times2004}=1-\frac{1}{2003\times2004}\)
\(\frac{2004\times2005-1}{2004\times2005}=\frac{2004\times2005}{2004\times2005}-\frac{1}{2004\times2005}=1-\frac{1}{2004\times2005}\)
ta có: \(\frac{1}{2003\times2004}>\frac{1}{2004\times2005}\Rightarrow1-\frac{1}{2003\times2004}<1-\frac{1}{2004\times2005}\)
\(\frac{2003\times2004-1}{2003\times2004}<\frac{2004\times2005-1}{2004\times2005}\)
So Sánh :
2003x2004-1/2003x2004 và 2004x2005-1/2004x2005
Trình bày rõ ràng nha các bạn
hãy so sánh ps \(\frac{2003x2004-1}{2003x2004}và\frac{2004x2005-1}{2004x2005}\)
bài so sánh :
\(\frac{2003x2004-1}{2003x2004}\)và \(\frac{2004x2005-1}{2004x2005}\)
\(\frac{2003.2004-1}{2003.2004}=\frac{2003.2004}{2003.2004}-\frac{1}{2003.2004}=1-\frac{1}{2003.2004}\)
\(\frac{2004.2005-1}{2004.2005}=\frac{2004.2005}{2004.2005}-\frac{1}{2004.2005}=1-\frac{1}{2004.2005}\)
Vì \(\frac{1}{2003.2004}>\frac{1}{2004.2005}\)
=> \(1-\frac{1}{2003.2004}< 1-\frac{1}{2004.2005}\)
=> \(\frac{2003.2004-1}{2003.2004}< \frac{2004.2005-1}{2004.2005}\)
So sánh A và B A= 2003x2004-1/2003x2004. b=2004x2005-1/2004x2005.
Giúp mình mình cần gấp
#)Giải :
Ta có :
\(A=\frac{2003\times2004-1}{2003\times2004}=\frac{2003\times2004}{2003\times2004}-\frac{1}{2003\times2004}=1-\frac{1}{2003\times2004}\)
\(B=\frac{2004\times2005-1}{2004\times2005}=\frac{2004\times2005}{2004\times2005}-\frac{1}{2004\times2005}=1-\frac{1}{2004\times2005}\)
Vì \(\frac{1}{2003\times2004}>\frac{1}{2004\times2005}\)
\(\Rightarrow A>B\)
+) \(A=\frac{2003\times2004-1}{2003\times2004}\)
\(=\frac{2003\times2004}{2003\times2004}-\frac{1}{2003\times2004}\)
\(=1-\frac{1}{2003\times2004}\)
+) \(B=\frac{2004\times2005-1}{2004\times2005}\)
\(=\frac{2004\times2005}{2004\times2005}-\frac{1}{2004\times2005}\)
\(=1-\frac{1}{2004\times2005}\)
+) Vì 2004 x 2005 > 2003 x 2004
=> \(\frac{1}{2004\times2005}< \frac{1}{2003\times2004}\)
=> \(1-\frac{1}{2004\times2005}>1-\frac{1}{2003\times2004}\)
Vậy B > A
A=2003x2004 - 1/2003x2004=2003x2004/2003x2004 - 1/2003x2004=1 - 1/2003x2004
B=2004x2005 - 1/2004x2005=2004x2005/2004x2005 - 1/2004x2005=1 - 1/2004x2005
Vì 1=1 và 1/2003x2004 > 1/2004x2005 nên 1-1/2003x2004 < 1-1/2004x2005
Vậy B < A
giúp với nhé mai
bài so sánh :
\(\frac{2003x2004-1}{2003x2004}\)và \(\frac{2004x2005-1}{2004x2005}\)
\(\frac{2003.2004-1}{2003.2004}=\frac{2003.2004}{2003.2004}-\frac{1}{2003.2004}=1-\frac{1}{2003.2004}\)
\(\frac{2004.2005-1}{2004.2005}=\frac{2004.2005}{2004.2005}-\frac{1}{2004.2005}=1-\frac{1}{2004.2005}\)
Vì \(\frac{1}{2003.2004}>\frac{1}{2004.2005}\)
=> \(1-\frac{1}{2003.2004}< 1-\frac{1}{2004.2005}\)
=> \(\frac{2003.2004-1}{2003.2004}< \frac{2004.2005-1}{2004.2005}\)
so sanh ( giai thich nua nhe)
a, 67/77 và 73/83
b, 456/461 va 123/128
c, 11/32 và 16/49
d, 2003x 2004-1/2003x2004 va 2004 x 2005 -1/ 2004x2005