Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
cô gái cá tính
Xem chi tiết
Nguyễn Minh Quang
12 tháng 8 2021 lúc 15:27

a. ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\times\left(-6\right)=13\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3\times\left(-6\right)\times1=19\)

\(x^5+y^5=\left(x+y\right)\left[x^4-x^3y+x^2y^2-xy^3+y^4\right]\)

\(=\left(x+y\right)\left[\left(x^2+y^2\right)^2-x^2y^2-xy\left(x^2+y^2\right)\right]=1.\left(13^2-\left(-6\right)^2-\left(-6\right).13\right)=211\)

b.\(x^2+y^2=\left(x-y\right)^2+2xy=1+2\times6=13\)

\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+6.3.1=19\)

\(x^5-y^5=\left(x-y\right)\left[\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\right]\)

\(=\left(x-y\right)\left[\left(x^2+y^2\right)^2-x^2y^2+xy\left(x^2+y^2\right)\right]=1.\left(13^2-6^2+6.13\right)=211\)

Khách vãng lai đã xóa
Hoàng Nhật anh
Xem chi tiết
Nguyễn Thiên Kỳ
Xem chi tiết
Nguyen van an
8 tháng 8 2017 lúc 15:27

(x+y)^2  =a^2

x^2 +2xy +y^2 =a^2

x^2+y^2 =a^2-2xy =a^2 -2b

x^3 +y^3 = (x+y)(x^2 -xy +y^2)

             =a(a^2-2b-b)

            =a(a^2-3b)

            =a^3- 3ab

(x^2 +y^2)^2=(a^2-2b)^2  ( cái này tính cho x^4 + y^4)

tương tự như câu đầu tiên 

x^5+ y^5 (cái đó mình không biết)

Nguyen van an
8 tháng 8 2017 lúc 15:28

sai con khi

Yen Nhi
2 tháng 7 2021 lúc 10:23

\(1.\)

\(a)\)

\(x^2+y^2\)

\(=\left(x+y\right)^2-2xy\)

\(=a^2-2b\)

\(b)\)

\(x^3+y^3\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=a[\left(x+y\right)^2-3xy]\)

\(=a\left(a^2-3b\right)\)

\(=a^3-3ab\)

\(c)\)

\(x^4+y^4\)

\(=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=\left(a^2-2b\right)^2-2b^2\)

\(=a^4-4a^2b+2b^2\)

\(d)\)

\(x^5+y^5\)

\(=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)

\(=[\left(x+y\right)^2-2xy][\left(x+y\right)^3-3xy\left(x+y]\right)-ab^2\)

\(=\left(a^2-2b\right)\left(a^3-3ab\right)-ab^2\)

\(=a^5-3a^3b-2a^3b+6ab^2-ab^2\)

\(=a^5-5a^3b+5ab^2\)

Khách vãng lai đã xóa
Thảo Bùi
Xem chi tiết
Thảo Bùi
Xem chi tiết
Yến Trang
Xem chi tiết
Võ Đông Anh Tuấn
11 tháng 9 2016 lúc 15:12

a ) \(x^2-2xy+y^2-1\)

\(=\left(x-y\right)^2-1\)

\(=\left(-3\right)^2-1\)

\(=9-1\)

\(=8\)

b ) \(x^2+y^2\)

\(=x^2-20+y^2+20\)

\(=x^2-2.10+y^2+20\)

\(=x^2-2xy+y^2+20\)

\(=\left(x-y\right)^2+20\)

\(=\left(-3\right)^2+20\)

\(=29\)

Trần Việt Linh
11 tháng 9 2016 lúc 15:09

a) \(x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)

b) Có: \(x^2-2xy+y^2=9\)

=> \(x^2+y^2=9+2xy=9+2\cdot10=9+20=29\)

Ngoc Hai Anh Nguyen
Xem chi tiết
WTFシSnow
28 tháng 7 2020 lúc 15:28

                   Áp dụng tính chất dãy tỉ số = nhau ý

Khách vãng lai đã xóa
nameless
28 tháng 7 2020 lúc 16:22

P/s: Vì lười nên chị viết tắt nha.
1) Áp dụng tính chất... ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=-\frac{32}{8}=-4\)
\(\Rightarrow\hept{\begin{cases}x=-4.3=-12\\y=-4.5=-20\end{cases}}\)
2) Có: \(\frac{x}{y}=\frac{9}{11}\Rightarrow\frac{x}{9}=\frac{y}{11}\)
Áp dụng tính chất... ta có: \(\frac{x}{9}=\frac{y}{11}=\frac{x+y}{9+11}=\frac{60}{20}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.9=27\\y=3.11=33\end{cases}}\)
3) tương tự 2)
4), 8)  9) tương tự 1)
5)
Có: \(7x=3y\Rightarrow\frac{x}{3}=\frac{y}{7}\)
Áp dụng tính chất... (Tương tự các phần trên).

6)7) tương tự 5)
10) 4x = 5y phải không ? Vậy vẫn tương tự 5)
 

Khách vãng lai đã xóa
ミ★Ƙαї★彡
28 tháng 7 2020 lúc 19:23

10) Sửa đề : \(4x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{4}\)và \(xy=80\)

Đặt \(\hept{\begin{cases}\frac{x}{5}=k\\\frac{y}{4}=k\end{cases}\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}}\)

Ta có : \(xy=5k.4k=20k^2=80\)

\(\Leftrightarrow k^2=4\Leftrightarrow k=\pm2\)

Tự làm nốt ... 

6) \(5x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{5}\)và \(y-x=18\)

Áp dụng t/c dãy tỉ số bằng nhau ta có : 

\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{18}{-2}=-9\)

Với \(\frac{x}{7}=-9\Leftrightarrow x=-63\)

Với \(\frac{y}{5}=-9\Leftrightarrow y=-45\)

Ok ! làm vậy đủ các cách làm rồi đấy. Làm nốt nhá ! Cố lến bn. 

Khách vãng lai đã xóa
Dương Nguyễn
Xem chi tiết
Không Tên
23 tháng 7 2018 lúc 20:12

Bài 2:

\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)

\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)

\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)

\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)

Không Tên
23 tháng 7 2018 lúc 20:10

Bài 1:

a)  \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)

b)  \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)

c)  \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)

d)  \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)

Huyền Hoàng thanh
Xem chi tiết