\(\frac{x+1}{2015}=\frac{2015}{x+1}\)
Bài 71. Cho x , y , z khác 0 và x + y + z \(\ne\)0 . Chứng minh rằng :
Nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) thì \(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{x^{2015}+y^{2015}+z^{2015}}\) .
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+z^2x+zx^2+3xyz-xyz=0\)
\(\Leftrightarrow\left(x^2y+xy^2\right)+\left(yz^2+z^2x\right)+\left(zx^2+2xyz+y^2z\right)=0\)
\(\Leftrightarrow xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x+y\right)^2=0\)
\(\Leftrightarrow\left(x+y\right)\left(xy+z^2+yz+zx\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
=> x = -y hoặc y = -z hoặc z = -x
Không mất tổng quát giả sử x = -y, khi đó:
\(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=-\frac{1}{y^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{z^{2015}}\)
\(\frac{1}{x^{2015}+y^{2015}+z^{2015}}=\frac{1}{-y^{2015}+y^{2015}+z^{2015}}=\frac{1}{z^{2015}}\)
\(\Rightarrow\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{x^{2015}+y^{2015}+z^{2015}}\)
Cho x>2015; y>2015 và \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2015}\) . Tính giá trị của biểu thức:
\(P=\frac{\sqrt{x+y}}{\sqrt{x-2015}+\sqrt{y-2015}}\)
Có \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2015}\)
<=> \(\frac{x+y}{xy}=\frac{1}{2015}=>xy=2015\left(x+y\right)\)
Có P2=\(\frac{x+y}{x-2015+y-2015+2\sqrt{xy-2015\left(x+y\right)+2015^2}}\) =\(\frac{x+y}{\left(x+y\right)-4030+2\sqrt{xy-xy+2015^2}}\)( vì 2015(x+y)=xy)
= \(\frac{x+y}{x+y-4030+2\sqrt{2015^2}}=\frac{x+y}{x+y-4030+2.2015}=\frac{x+y}{x+y}\)=1
=> P=1(vì P>0)
Tìm x
\(\frac{x-1}{2015}-\frac{1}{2015}=\frac{10-2x}{2015}\)
\(\frac{x-1}{2015}-\frac{1}{2015}=\frac{10-2x}{2015}\)
\(\Rightarrow x-1-1=10-2x\)
\(\Rightarrow x-2=10-2x\)
\(\Rightarrow-2x+x=10+2\)
\(\Rightarrow-x=12\Rightarrow x=-12\)
Tìm x biết:
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x+2015=\frac{2016}{1}+\frac{2017}{2}+...+\frac{4029}{2014}+\frac{4030}{2015}\)
Tìm x, biết:
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x+2015=\frac{2016}{1}+\frac{2017}{2}+...+\frac{4030}{2015}\).
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=\left(\frac{2016}{1}-1\right)+\left(\frac{2017}{2}-1\right)+...+\left(\frac{4030}{2015}-1\right)\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=\frac{2015}{1}+\frac{2015}{2}+...+\frac{2015}{2015}\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=2015.\left(1+\frac{1}{2}+...+\frac{1}{2015}\right)\)
=> x = 2015
Tìm x biết \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right).x+2015=\frac{2016}{1}+\frac{2017}{2}+...+\frac{4030}{2015}\)
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right).x+2015=\frac{2016}{1}+\frac{2017}{2}+\frac{2018}{3}+...+\frac{4030}{2015}\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right).x=\left(\frac{2016}{1}-1\right)+\left(\frac{2017}{2}-1\right)+...+\left(\frac{4030}{2015}-1\right)\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right).x=\frac{2015}{1}+\frac{2015}{2}+...+\frac{2015}{2015}=2015.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)\)\(\Rightarrow x=2015\)
tìm x biết \(\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2015}\right)\times x+2015=\frac{2016}{1}+\frac{2017}{2}+.....+\frac{4029}{2014}+\frac{4030}{2015}\)
\(x+2015\frac{1}{2}=\sqrt{1+2015^2+\frac{2015^2}{20162}}+\frac{2015}{2016}\)
Bài 1 : tìm x , biết :
\(\frac{x-4}{2015}-\frac{1}{2015}=\frac{10-2x}{2015}\)
\(\frac{x-4}{2015}-\frac{1}{2015}=\frac{10-2x}{2015}\)
\(\Rightarrow\frac{x-4}{2015}-\frac{10-2x}{2015}=\frac{1}{2015}\)
\(\Rightarrow\frac{x-4-\left(10-2x\right)}{2015}=\frac{1}{2015}\)
\(\Rightarrow\frac{\left(x+2x\right)-\left(4+10\right)}{2015}=\frac{1}{2015}\)
\(\Rightarrow\frac{3x-14}{2015}=\frac{1}{2015}\)
\(\Rightarrow\left(3x-14\right).2015=2015\)
\(\Rightarrow3x-14=1\) ( bớt cả 2 vế đi 2015 lần )
\(\Rightarrow3x=15\)
\(\Rightarrow x=5\)
Vậy \(x=5\)
tìm x biết
\(\left(1+\frac{1}{2}+\frac{1}{3}+...........+\frac{1}{2015}\right)x+2015=\frac{2016}{1}+\frac{2017}{2}+............+\frac{4030}{2015}\)
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x+2015=\frac{2016}{1}+\frac{2017}{2}+...+\frac{4030}{2015}\)
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=\left(\frac{2016}{1}-1\right)+\left(\frac{2017}{2}-1\right)+...+\left(\frac{4030}{2015}-1\right)\)
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=\frac{2015}{1}+\frac{2015}{2}+...+\frac{2015}{2015}\)
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=2015.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)\)
\(\Rightarrow x=2015\)
Bạn có thể tham khảo nhé!^-^