CMR: Với \(a,b\in N\) . Nếu \(a^2+b^2⋮3\) thì cả 2 số a và b phải chia hết cho 3
cmr với n là số tn thì
a)2 nhân n mũ 3 +n chia hết cho 3.
b)n nhân (5n cộng 3) nhân (2n mũ 2 cộng 1) chia hết cho 6.
c) cho số tn a,b,c. chứng minh rằng a mũ 3 cộng b mũ 3 cộng c mũ 3 chia hết cho 6 thì a cộng b cộng c chia hết cho 6 và ngược lại, nếu a +b+c chia hết cho 6 thì a mũ 3 +b mũ 3+c mũ 3 cũng chia hết cho 6
1;cho 2 số tự nhiên a,b
CMR nếu a và b là 2 số chia hết cho 3 thì
a2+b2-19ab chia hết cho 9 và ngược lại nếu a2+b2-19ab thì a và b chia hết cho 3
Giúp mk bài này cái. Mài phải nộp ròi
Bài ?!!
a, cho a+c=2b và 2bd=c(b+d) (b và d khác 0)
CMR a/b = c/d
b, CMR: với mọi số nguyên dương n thì 3^(n+2) - 2^(n+2) + 3^(n-2n) chia hết cho 10
Chứng minh phản chứng
a) Với n là số tự nhiên, n2 chia hết cho 2 thì n cũng chia hết cho 2 .
b) Với n là số tự nhiên,n3 chia hết cho 3 thì n cũng chia hết cho 3 .
c) Nếu a+b < 2 thì một trong hai số a và b nhỏ hơn 1.
4)Cho a và b là các số tự nhiên .CMR
a)Nếu a2+b2 chia hết cho 2 thì a+b chia hết cho 2
b)Nếu a3+b3 chia hết cho3 thì a+b chia hết cho 3
a) Phần này dễ, bạn cứ làm theo hướng của phần b là được. Mình sẽ làm phần b khó hơn.
b) Ta có: a3-a = a.(a-1).(a+1) (với a thuộc Z). Mà a.(a-1).(a+1) là tích của 3 số tự nhiên liên tiếp nên
a.(a-1).(a+1) chia hết cho 3.
=> a3- a chia hết cho 3.
Chứng minh tương tự ta có b3 - b chia hết cho 3 và c3 - c chia hết cho 3 với mọi b,c thuộc N.
=> a3+b3+c3 - (a+b+c) luôn chia hết cho 3 với mọi a,b,c thuộc N.
Do đó nếu a3+b3+c3 chia hết cho 3 thì a+b+c chia hết cho 3 và điều ngược lại cũng đúng.
Vậy đpcm.
Tớ làm thêm một cách cho câu b nhé ;)
Ta có: \(a^3+b^3⋮3\Rightarrow a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2⋮3\) \(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)⋮3\)
Do a và b là các số tự nhiên => \(3ab\left(a+b\right)⋮3=>\left(a+b\right)^3⋮3\)
=> a+b chia hết cho 3
b1: cmr nếu x+y+z=-3 thì (x+1)^3+(y+1)^3+(z+1)^3= 3(x+1)(y+1)(z+1)
b2: cho A+ (a^2+b^2-c^2)^2 -4a^2b^2
a) phân tích A thành nhân tử
b) cm nếu a,b,c là số đo độ dài các cạnh của 1 tam giác thì A<0
b3: cho đa thức M=(a+b)(b+c)(c+a)+abc
a/ phân tích M thành nhân tử
b/ cm nếu a,b,c thuộc z và a+b+c chia hết cho 6 thì (M-3abc) chia hết cho 6
b4: n thuộc z. cm n^3(n^2-7)^2 _ 36n chia hết cho 105
b5: xác định a,b để đa thức x^4- 3x^3+3x^2+ ax+b chia hết cho đa thức x^2-3x+4.
CÁC BẠN GIÚP MÌNH VỚI. CHIỀU PHẢI NỘP BÀI RỒI. HUHUHU :((((
cho P = ab(a+b)+2 với a,b \(_{\in Z}\)CMR nếu P chia hết cho 3 thì P chia hết cho 9
CMR: Nếu ab và a+b cùng chia hết cho c thì các số (a2+b2) và (a3+b3) chia hết cho c
1, Một phép chia có thương bằng 82, số dư bằng 47, số bị chia nhỏ hơn 4000. Tìm số chia
2, CMR: Nếu 2 số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7
3, CMR: Số có dạng \(\overline{aaa}\) bao giờ cũng chia hết cho 37
4, CMR: Với mọi số tự nhiên n thì tích (n+3) x (n+6) chia hết cho 2
5, Tìm các chữ số a và b sao cho a-b=4 và \(\overline{87ab}\) chia hết cho 9
Giúp mk nha các bn