xác định a để hệ phương trình \(\hept{\begin{cases}2x+y=a+2\\x-y=a\end{cases}}\)có nghiệm thỏa mãn x<y
a)cho hệ phương trình \(\hept{\begin{cases}x-2y=3-m\\2x+y=3\left(m+2\right)\end{cases}}\)
Gọi nghiệm của hệ phương trình là(x;y)Tìm m để \(x^2+y^2\)đạt GTNN
b)Cho hệ phương trình \(\hept{\begin{cases}mx+y=5\\2x-y=2\end{cases}}\)
Tìm m để hệ phương trình có nghiệm thỏa mãn x+y=1
bài 1: Trong buổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ
bài 2:
1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)
a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó
b) tìm a để hệ phương trình vô nghiệm
2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)
a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a
b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1
c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên
bài 3:
1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)
2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm
Cho hệ phương trình \(\hept{\begin{cases}x+y=0\\2x-my=0\end{cases}}\left(1\right)\)
a) Xác định giá trị của m để hệ (1) vô nghiệm
b) Tìm m để hệ (1) có nghiệm (x,y) thỏa mãn x+y=1
Giúp mình với
Cho hệ phương trình: \(\hept{\begin{cases}2x-y=2m-1\\-x+y=2\end{cases}}\)
a) Giải hệ phương trình với m=1
b) Tìm m để hệ phương trình có nghiệm (x ; y) thỏa mãn : x+ 2y = 3.
Với m =1 suy ra :
\(\hept{\begin{cases}2x-y=1\\-x+y=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=2x-1\\-x+2x-1=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=2.3-1=5\\x=3\end{cases}}\)
b ) Để hệ có nghiệm x+2y=3
\(\Rightarrow\hept{\begin{cases}x+2y=3\\-x+y=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3-2y\\-\left(3-2y\right)+y=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3-2.\frac{5}{3}=-\frac{1}{3}\\y=\frac{5}{3}\end{cases}}\)
\(\Rightarrow2.\left(-\frac{1}{3}\right)-\frac{5}{3}=2m-1\Rightarrow m=-\frac{2}{3}\)
Cho hệ phương trình \(\hept{\begin{cases}\left(a+1\right)x-y=3\\ax+y=a\end{cases}}\)
Xác định giá trị của a để hệ có nghiệm duy nhất thỏa mãn x+y>0
\(\Leftrightarrow\hept{\begin{cases}\left(a+1\right)x-y=3\\y=a-ax\end{cases}}\)
Thay y=a-ax vào pt đầu,ta có
\(\left(a+1\right)x-a+ax=3\)
\(\Leftrightarrow ax+x-a+ax=3\)
\(\Leftrightarrow\)2ax+x=a+3
\(\Leftrightarrow\)x(2a+1)=a+3
Dể hpt có nghiệm duy nhất thì 2a+1\(\ne\)0
\(\Leftrightarrow\)a\(\ne\)\(\frac{-1}{2}\)
\(\Rightarrow\)\(x=\frac{a+3}{2a+1}\)
Mà y=a-ax
\(\Rightarrow y=\frac{a^2-2a}{2a+1}\)
Để x+y>0 thì\(\frac{a+3}{2a+1}+\frac{a^2-2a}{2a+1}=\frac{a^2-a+3}{2a+1}=\frac{\left(a-\frac{1}{2}\right)^2+\frac{11}{4}}{2a+1}\)
Vì tử số >0 nên để x+y>0 thì 2a+1>0
\(\Rightarrow a>-\frac{1}{2}\left(tm\right)\)
Vậy để hpt có nghiệm duy nhất tm x+y>0 thì a>\(-\frac{1}{2}\)
Tìm m nguyên để
a, Hệ phương trình \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)có nghiệm thỏa mãn \(x;y\in Z\)
b, Hệ phương trình \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)có nghiệm thỏa mãn A=xy đạt giá trị lớn nhất.
a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)
\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)
Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.
b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)
\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)
\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)
alibaba nguyễn có thể làm chi tiết hơn được ko
Cho hệ phương trình \(\hept{\begin{cases}x+ay=1\\-ax+y=a\end{cases}}\)
a, Tìm giá trị nguyên của a để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn 2x -y= a+1
b, tìm a để hệ có nghiệm (x;y) sao cho x<0; y<0
\(\hept{\begin{cases}x+ay=1\\\\-ax+y=a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-ay\\-a\left(1-ay\right)+y=a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-\frac{2a^2}{1+a^2}=\frac{1-a^2}{1+a^2}\\y=\frac{2a}{1+a^2}\end{cases}}\)
Theo đề bài ta có \(\hept{\begin{cases}x< 0\\y< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}1-a^2< 0\\2a< 0\end{cases}}\)
\(\Leftrightarrow x< -1\)
a/ Ta xem đây là hệ phương trình 3 ẩn rồi giải bình thường.
\(\hept{\begin{cases}x+ay=1\\-ax+y=a\\2x-y=a+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-ay\\-a\left(1-ay\right)+y=a\\2\left(1-ay\right)-y=a+1\end{cases}}\)
Tới đây giải tiếp nhé. Không có bút giấy nháp nên giúp tới đây nhé. Chỉ cần thế là được nhé
Cho hệ phương trình: \(\hept{\begin{cases}x+y=4\\2x+3y=m\end{cases}}\)
Tìm m để hệ phương trình có nghiệm (x,y) thoả mãn\(\hept{\begin{cases}x>0\\y< 0\end{cases}}\)
\(\hept{\begin{cases}x+y=4\left(1\right)\\2x+3y=m\left(2\right)\end{cases}}\)
từ \(\left(1\right)\)ta có: \(x=4-y\)\(\left(3\right)\)
thay \(\left(3\right)\) vào \(\left(2\right)\)ta được
\(2.\left(4-y\right)+3y=m\)
\(8-2y+3y=m\)
\(8+y=m\)
\(y=m-8\) \(\left(4\right)\)
hệ phương trình có nghiệm duy nhất khi pt \(\left(4\right)\) có nghiệm duy nhất
ta thấy pt (4) luôn có nghiệm duy nhất với \(\forall y\in R\)
vậy \(\forall y\in R\)thì hệ pt đã cho có nghiệm \(\left(x;y\right)=\left(4-y;m-8\right)\)
theo bài ra \(\hept{\begin{cases}x>0\\y< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4-y>0\\m-8< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}y>4\\m< 8\end{cases}}\)
vậy \(m< 8\) là tập hợp các giá trị cần tìm
Ta có :
\(\hept{\begin{cases}x+y=4\\2x+3y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=4\\x+x+y+y+y=m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\4+4+y=m\end{cases}\Leftrightarrow\hept{\begin{cases}y=4-x\\8+4-x=m\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=4-12+m\\x=12-m\end{cases}}\Leftrightarrow\hept{\begin{cases}y=m-8\\x=12-m\end{cases}}\)
\(\Leftrightarrow\)\(x+y=m-8+12-m=4\)
\(\Leftrightarrow\hept{\begin{cases}y=4-8\\x=12-4\end{cases}\Leftrightarrow\hept{\begin{cases}y=-4\\x=8\end{cases}}}\)
Thoả mãn \(x>0;y< 0\)
Vậy \(x=8\) và \(y=-4\)
Cho hệ phương trình:\(\hept{\begin{cases}mx-y=2\\-x-my=-3\end{cases}}\)
a, CM hệ luôn có nghiệm với mọi giá trị của m
b, Tìm m để hệ có nghiệm (x;y) thỏa mãn ĐK: 2x + y = 0