Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Phương
Xem chi tiết
Trieu Trinh Duc
Xem chi tiết
rtcfgbnomk
Xem chi tiết
Hoàng Hải Đăng
Xem chi tiết
daica
27 tháng 6 2016 lúc 21:54

oho

No_pvp
12 tháng 7 2023 lúc 16:34

Mày nhìn cái chóa j

Thu Thủy vũ
Xem chi tiết
Pham Van Hung
7 tháng 3 2019 lúc 21:41

Đặt \(x+\frac{1}{x}=t\Rightarrow\left(x+\frac{1}{x}\right)^2=t^2\Leftrightarrow x^2+\frac{1}{x^2}=t^2-2\)

Khi đó phương trình đã cho 

\(\Leftrightarrow2t^2+\left(t^2-2\right)^2-t^2\left(t^2-2\right)=4-4x+x^2\)

\(\Leftrightarrow2t^2+t^4-4t^2+4-t^4+2t^2=x^2-4x+4\)

\(\Leftrightarrow4=x^2-4x+4\)

\(\Leftrightarrow x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

Mà ĐKXĐ của phương trình là \(x\ne0\)

Tập nghiệm của pt là \(S=\left\{4\right\}\)

Phạm Tuấn Đạt
7 tháng 3 2019 lúc 21:51

Đặt \(x+\frac{1}{x}=a\)

\(\Rightarrow\left(x+\frac{1}{x}\right)^2=a^2\Leftrightarrow x^2+\frac{1}{x^2}+2=a^2\Leftrightarrow x^2+\frac{1}{x^2}=a^2-2\)

Có \(2a^2+\left(a^2-2\right)^2-a^2\left(a^2-2\right)=\left(2-x\right)^2\)

\(2a^2+a^4-4a^2+4-a^4+2a^2=\left(2-x\right)^2\)

\(\Leftrightarrow4=\left(2-x\right)^2\)

\(\Rightarrow\orbr{\begin{cases}2-x=4\\2-x=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=6\end{cases}}\)

Vậy \(S=\left(-2;6\right)\)

Thu Thủy vũ
7 tháng 3 2019 lúc 21:56

Tại sao \(\left(x^2+\frac{1}{x^2}\right)=t^2-2\) thế

Trần Lâm Thiên Hương
Xem chi tiết
Đào Thành Lộc
Xem chi tiết
Phạm Thái Dương
6 tháng 5 2016 lúc 13:49

\(\Leftrightarrow\frac{2^{3x^2-3x+1}}{3^{x^2-x+1}}.\frac{3^{2x^2-3x+2}}{5^{2x^2-3x+2}}.\frac{5^{3x^2-4x+3}}{7^{3x^2-4x+3}}.\frac{7^{4x^2-5x+4}}{2^{4x^2-5x+4}}=210^{\left(x-1\right)^2}\)

\(\Leftrightarrow\frac{\left(3.5.7\right)^{x^2-x+1}}{2^{x^2-2x+1}}=2^{\left(x-1\right)^2}.\left(3.5.7\right)^{\left(x-1\right)^2}\)

\(\Leftrightarrow105^x=2^{2\left(x-1\right)^2}\)

Lấy Logarit cơ số 2 hai vế, ta được :

\(2\left(x-1\right)^2=\left(\log_2105\right)x\)

\(\Leftrightarrow2x^2-\left(4+\log_2105\right)x+2=0\)

\(\Leftrightarrow x=\frac{\left(2+\log_2105\right)\pm\sqrt{\log^2_2105+8\log_2105}}{4}\)

Vậy phương trình đã cho có 2 nghiệm

Thu Thủy vũ
Xem chi tiết
Con Chim 7 Màu
13 tháng 3 2019 lúc 19:03

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left[\left(x^2+\frac{1}{x^2}\right)-\left(x+\frac{1}{x}\right)^2\right]=\left(x+4\right)^2.ĐKXĐ:x\ne0\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}-x^2-2-\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2-8\left(x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left[\left(x+\frac{1}{x}\right)^2-\left(x^2+\frac{1}{x^2}\right)\right]=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x^2+2+\frac{1}{x^2}-x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow16=\left(x+4\right)^2\)

\(\Leftrightarrow x^2+8x+16=16\)

\(\Leftrightarrow x^2+8x=0\)

\(\Leftrightarrow x\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=-8\left(n\right)\end{cases}}\)

V...\(S=\left\{-8\right\}\)

^^

Con Chim 7 Màu
13 tháng 3 2019 lúc 19:05

bạn ghi sai đề ở chỗ \(\left(x+\frac{1}{x}\right)^2\)chứ ko phải \(\left(x+\frac{1}{x^2}\right)^2\)nhé

Phan Lê Kim Chi
Xem chi tiết