tìm gtnn của biểu thức P = căn x. (căn x-1)/2
Bài 1: Tìm GTNN của biểu thức: căn x(căn x-2)/ 1+ căn x
Bài 2: Tìm GTLN của biểu thức: căn x+3/4x
Tìm GTNN của biểu thức A= căn (x-1)+căn(x^2-3x+11). Giúp mình với!!!!
Tìm GTNN của biểu thức A= Căn x2-2x+1 + Căn (x-4)^2 + Căn (x-6)^2
\(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)
\(=\sqrt{\left(x-1\right)^2}+\left|x-4\right|+\left|x-6\right|\)
\(=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)
\(=\left|x-4\right|+\left(\left|x-1\right|+\left|x-6\right|\right)\)
\(=\left|x-4\right|+\left(\left|x-1\right|+\left|6-x\right|\right)\)
Ta có \(\hept{\begin{cases}\left|x-4\right|\ge0\forall x\\\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=\left|5\right|=5\end{cases}}\)
=> \(\left|x-4\right|+\left(\left|x-1\right|+\left|6-x\right|\right)\ge5\forall x\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-4=0\\\left(x-1\right)\left(6-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\1\le x\le6\end{cases}}\Leftrightarrow x=4\)
=> MinA = 5 <=> x = 4
Ta có: \(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)
\(\Rightarrow A=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)
\(=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)
\(=\left|x-4\right|+\left|x-1\right|+\left|x-6\right|\)
Xét \(\left|x-1\right|+\left|x-6\right|\)ta có:
\(\left|x-1\right|+\left|x-6\right|=\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=\left|5\right|=5\)(1)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-1\right)\left(6-x\right)\ge0\)
TH1: Nếu \(\hept{\begin{cases}x-1< 0\\6-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\6< x\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x>6\end{cases}}\)( vô lý )
TH2: Nếu \(\hept{\begin{cases}x-1\ge0\\6-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\6\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le6\end{cases}}\Leftrightarrow1\le x\le6\)
mà \(\left|x-4\right|\ge0\)(2)
Từ (1) và (2) \(\Rightarrow A\ge5\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-4=0\\1\le x\le6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\1\le x\le6\end{cases}}\Leftrightarrow x=4\)
Vậy \(minA=5\)\(\Leftrightarrow x=4\)
Tìm GTNN của biểu thức :
căn x -1 / căn x + 1
ĐKXĐ: x>=0
a: P=1/2
=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}+5}=\dfrac{1}{2}\)
=>\(2\sqrt{x}+4=\sqrt{x}+5\)
=>\(\sqrt{x}=1\)
=>x=1(nhận)
b: \(P^2-P=P\left(P-1\right)\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+5}\cdot\dfrac{\sqrt{x}+2-\sqrt{x}-5}{\sqrt{x}+5}\)
\(=\dfrac{-3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+5\right)^2}< 0\)
=>\(P^2< P\)
c: Để P nguyên thì \(\sqrt{x}+2⋮\sqrt{x}+5\)
=>\(\sqrt{x}+5-3⋮\sqrt{x}+5\)
=>\(\sqrt{x}+5\inƯ\left(-3\right)\)
=>\(\sqrt{x}+5\in\left\{1;-1;3;-3\right\}\)
=>\(\sqrt{x}\in\left\{-4;-6;-2;-8\right\}\)
=>\(x\in\varnothing\)
Tìm GTNN của biểu thức
A= Căn x2-2x+1 + Căn (x-4)2 + Căn (x-6)2
Ta có: \(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)
\(\Leftrightarrow A=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)
\(\Leftrightarrow A=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)
Vì \(\left|a\right|=\left|-a\right|\) \(\Rightarrow\)\(\left|x-6\right|=\left|6-x\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có:
\(\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=5\)
\(\Rightarrow\)\(A\ge\left|x-4\right|+5\)
Vì \(\left|x-4\right|\ge0\forall x\)\(\Rightarrow\)\(\left|x-4\right|+5\ge5\forall x\)
\(\Rightarrow\)\(A\ge5\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)\left(6-x\right)>0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}1< x< 6\\x=4\end{cases}}\)
\(\Rightarrow x=4\)
Vậy \(A_{min}=5\)\(\Leftrightarrow\)\(x=4\)
tìm gtnn của biểu thức S=căn x +x+4/căn x
cho x,y,z là các số thực thỏa mãn -1<=x,y,z <=1 và x+y+z =o. tìm GTNN biểu thức :P=căn bậc 2 1+x+y^2 +căn bậc 2 của 1+y+z^2 + căn bậc 2 của 1+z+x^2
Tìm GTNN của biểu thức P = -3/((căn x) +1)
ĐKXĐ: x ≥ 0
P nhỏ nhất khi √x + 1 nhỏ nhất
Do x ≥ 0 nên √x + 1 ≥ 1
⇒ √x + 1 nhỏ nhất là 1 khi x = 0
⇒ GTNN của P là -3/(0 + 1) = -3 khi x = 0