Cho tam giác ABC vuông tại A. Biết AB = 14,568 cm, AC = 13,245 cm. Kẻ AH vuông góc với BC.
a) Tính BC, AH, HC.
b) Kẻ phân giác BN của B. Tính NA.
Giúp mình với ạ.
Cho tớ hỏi bài này:
Cho tam giác vuông ABC (A=1v) có AB=14,568 cm và AC=13,245 cm. Kẻ AH vuông góc với BC.
1/Tính BC; AH; HC.
2/ Kẻ phân giác BN của góc B. Tính NA.
cho tam giác ABC AB=AC kẻ AH là tia phân giác của góc A (H €BC) .Biết AB=15cm AH=12cm
a,Cm:HB=HC
b,Cm: AH vuông góc với BC
c,kẻ HM vuông góc với AB kẻ HN vuông góc với AC. Cm:HM=HN
d,Qua B kẻ đường thẳng vuông với BC cắt tia CA tại D. Cm:Góc ABD= góc ADB(ko cần vẽ hình giải thôi ạ)
(Giúp mình vs ,mk sắp đi học r ạ,nhanh mk tick cho)
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC
a/ CM:tam giác AHB= tam giác AHC
b/ CM: BH=CH
C/ Biết AH=12cm : HC=5cm. Tính AC
d/ Qua B kẻ BN vuông góc với AC và qua C kẻ CM vuông góc với AB
CM: AM=AN
Biết BN cắt CM tại O , chứng minh 3 điểm A;O; thẳng hàng
a, Xét hai tam giác AHB và tam giác AHC có:
AC= AB (cân) (gt)
AH là cạnh chung
góc ABH= góc ACH
=> hai tam giác bằng nhau theo trường hợp cạnh huyền góc nhọn
b, ta có tam giác ABC cân
và AH là đường cao => AH cũng là đường trung tuyến của tam giác ABC
c, bạn áp dụng định lí py ta go là ra ngay
Cho tam giác ABC cân tại A có AB = AC = 10 cm;BC = 12 cm.Kẻ AH vuông góc với BC. a) Chứng minh HB = HC;tính AH. b) kẻ Bx vuông góc với AB tại B; Cy vuông góc với AC tại C; Bx và Cy cắt nhau tại M. chứng minh AM là tia phân giác của góc BAC và suy ra A,H,M thẳng hàng. c)kẻ HK song song với MB(K thuộc MC) Trên tia HM lấy điểm O sao cho OM = 2OH. Chứng minh ba điểm B,O,K thẳng hàng
Câu c. lên lớp 8 thì em có thể dùng đường trung bình dễ hơn nhiều nhé.
Cho tam giác ABC vuông tại A , đường cao AH
1. Biết AB = 18 cm , AC =24 cm .
a, Tính BC , BH , AH .
b, Tính các góc của tam giác ABC.
2. Kẻ HE vuông góc với AB , HF vuông góc với AC .
Chứng minh AE.EB+À.FC = AH 2
Bài 1:
a: BC=30cm
AH=14,4(cm)
BH=10,8(cm)
Cho tam giác ABC vuông tại A có AC = 20 cm. Kẻ AH vuông góc với BC. Biết BH = 9cm, HC = 16 cm. Tính độ dài cạnh AB, AH?
A. A H = 12 c m ; A B = 15 c m
B. A H = 10 c m ; A B = 15 c m
C. A H = 15 c m ; A B = 12 c m
D. A H = 12 c m ; A B = 13 c m
Cho tam giác ABC vuông tại A ( AB<AC) kẻ AH vuông góc với BC , phân giác góc HAC cắt BC tại D
a) Cm : tam giác ABD cân tại B
b) Từ H kẻ đường thẳng vuông góc với AD cắt Ac tại E . CM: DE vuông góc AC
c) Cho AB=15cm, AH=12cm. Tính AD
Cho Tam giác ABC vuông tại A biết AB = 6 cm ,AC =8cm .kẻ phân giác BD a) Tính BC,AD,CD b) Kẻ đg cao AH, BD tại E. CM tam giác AED cân tại A c) CM CA/AH=AD/EH đ) Từ C kẻ đt vuông góc vs BD cắt AB tại F CM BF/BD=BC/BD Giúp mình vs ạk
a) Áp dụng định lí Pytago vào ΔABC vuông tại A,ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
Cho tam giác ABC vuông tại A .Có AB =6 cm ,BC=10 cm . Kẻ đường cao AH
a, Tính AC,BH,AH .Tính chu vi và diện tích tam giác ABC
b, Kẻ phân giác AD .Tính BD,AD
C, Kẻ HM,HN lần lướt vuông góc với AB,AC CM :AM.AB=AN.AC
Làm giúp mk . cảm ơn ạ ^_^
a, Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AC^2=100-36=64\Leftrightarrow AC=8\)cm
* Áp dụng hệ thức :
\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{36}{10}=\frac{18}{5}\)cm
* Áp dụng hệ thức :
\(AH^2=CH.BH\)mà \(BC-BH=CH\Rightarrow CH=10-\frac{18}{5}=\frac{32}{5}\)cm
\(\Rightarrow AH^2=\frac{32}{5}.\frac{18}{5}=\frac{576}{25}\Rightarrow AH=\frac{24}{5}\)cm
Chu vi tam giác ABC là : \(P_{ABC}=AB+AC+BC=6+10+8=24\)cm
Diện tích tam giác ABC là : \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.6.8=24\)cm2
b, Ta có AD là phân giác nên : \(\frac{AB}{BC}=\frac{BD}{CD}\)( t/c )
\(\Rightarrow\frac{CD}{BC}=\frac{BD}{AB}\)( tỉ lệ thức )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{CD}{BC}=\frac{BD}{AB}=\frac{CD+BD}{AB+BC}=\frac{BC}{16}=\frac{1}{2}\)
\(\Rightarrow\frac{BD}{6}=\frac{1}{2}\Rightarrow BD=3\)cm
\(\Rightarrow HD=BH-BD=\frac{18}{5}-3=\frac{3}{5}\)cm
Áp dụng định lí Pytago cho tam giác ADH vuông tại H ta có :
\(AD^2=HD^2+AH^2=\frac{9}{25}+\frac{576}{25}=\frac{585}{25}\Rightarrow AD=\frac{3\sqrt{65}}{5}\)cm
a) Áp dụng định lý Py-ta-go vào tam giác ABC có :
AB2 + AC2 = BC2
=> AC2 = BC2 - AB2 = 102 - 62 = 64
=> AC = 8
Xét tam giác ABH và tam giác BCA có
\(\hept{\begin{cases}\widehat{ABC}\text{ chung }\\\widehat{BAC}=\widehat{AHB}\left(=90^{\text{o}}\right)\end{cases}}\Rightarrow\Delta ABH\approx\Delta BCA\left(g-g\right)\)
=> \(\frac{AH}{AB}=\frac{BH}{AC}=\frac{AB}{BC}\)
=> \(\frac{AH}{6}=\frac{BH}{8}=\frac{6}{10}\)
=> \(AH=3,6;BH=4,8\)