Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thuy tien Tran
Xem chi tiết
Dương Thị Trà My
Xem chi tiết
Đàm Thảo Anh
1 tháng 11 2016 lúc 13:06

2(a-b)(c-b)+2(b-a)(c-a)+2(b-c)(a-c)

=2a^2+2b^2+2c^2-2bc-2ab-2ac

=a^2-2ac+c^2+a^2-2ab+b^2+b^2-2bc+c^2

=(a-c)^2+(a-b)^2+(b-c)^2

DD
Xem chi tiết
Đoàn Đức Hà
2 tháng 8 2021 lúc 18:07

\(\left(a+b+c\right)^2+a^2+b^2+c^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2\)

\(=a^2+2ab+b^2+b^2+2bc+c^2+c^2+2ca+a^2\)

\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)

Khách vãng lai đã xóa
Otokasa Yuu
Xem chi tiết
Dũng Nguyễn
28 tháng 7 2018 lúc 10:12

a,(a+b+c)^2+a^2+b^2+c^2

=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2

=(a^2+2ab+b^2)+(b^2+2bc+c^2)+(a^2+2ac+c^2)

=(a+b)^2+(b+c)^2+(a+c)^2

b,(2a-b)(c-b)+2(b-a)(c-a)+2(b-c)(a-c)

=2(a-b)(c-b-c+a)+2(b-c)(c-a)

=2(a-b)(a-b)+2(b-c)(c-a)

=2(a-b)^2+2(b-c)(c-a)

=2(a^2-2ab+b^2)+(ab-bc-ca+c^2)

=2(a^2+b^2+c^2-ab-bc-ca)

=(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)

=(a-b)^2+(b-c)^2+(c-a)^2

chúc bạn học tốt!!!

Vương Nguyên
Xem chi tiết
Nguyễn Thị BÍch Hậu
4 tháng 7 2015 lúc 9:44

a)\(\left[\left(a-b\right)^2-2\left(a-b\right)\left(c-b\right)+\left(c-b\right)^2\right]-\left(a-b\right)^2-\left(b-c\right)^2=\left(a-b-c+b\right)^2-\left(a-b\right)^2-\left(b-c\right)^2\)

\(=\left(a-c\right)^2-\left(a-b\right)^2-\left(b-c\right)^2\) tương tự thì

A= \(\left(a-c\right)^2-\left(a-b\right)^2-\left(b-c\right)^2+\left(b-c\right)^2-\left(b-a\right)^2-\left(c-a\right)^2+\left(b-a\right)^2-\left(b-c\right)^2-\left(a-c\right)^2\)

\(=\left(a-c\right)^2-\left(a-b\right)^2-\left(b-c\right)^2+\left(b-c\right)^2-\left(a-b\right)^2-\left(a-c\right)^2+\left(a-b\right)^2-\left(b-c\right)^2-\left(a-c\right)^2\)

\(=-\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\)

Phí Quỳnh Anh
Xem chi tiết
Bảo Tú Lê Thị
Xem chi tiết
休 宁 凯
Xem chi tiết
Nguyễn Minh Đăng
21 tháng 9 2020 lúc 18:10

Ta có: \(\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(=\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)

\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

=> đpcm

Khách vãng lai đã xóa
thảo Hương
Xem chi tiết
kagamine rin len
15 tháng 6 2016 lúc 22:29

1) a) a^2+b^2=ab+ba

<=> a^2+b^2-2ab=0

<=> (a-b)^2=0

<=> a-b=0 <=> a=b (đpcm)

b) a^2+b^2+c^2=ab+bc+ca

<=> 2a^2+2b^2+2c^2=2ab+2bc+2ca

<=> (a^2-2ab+b^2)+(a^2-2ca+c^2)+(b^2-2bc+c^2)=0

<=> (a-b)^2+(a-c)^2+(b-c)^2=0

<=> a-b=0 và a-c=0 và b-c=0

<=> a=b và a=c và b=c

<=> a=b=c (đpcm)