Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Phương Linh
Xem chi tiết
Sakura Akari
18 tháng 11 2018 lúc 6:45

\(A=\dfrac{1}{8.14}+\dfrac{1}{14.20}+\dfrac{1}{20.26}+...+\dfrac{1}{50.56}\)

\(A=\dfrac{1}{6}.\left(\dfrac{6}{8.14}+\dfrac{6}{14.20}+\dfrac{6}{20.26}+...+\dfrac{6}{50.56}\right)\)

\(A=\dfrac{1}{6}.\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{26}+...+\dfrac{1}{50}-\dfrac{1}{56}\right)\)

\(A=\dfrac{1}{6}.\left(\dfrac{1}{8}-\dfrac{1}{56}\right)\)

\(A=\dfrac{1}{6}.\left(\dfrac{7}{56}-\dfrac{1}{56}\right)\)

\(A=\dfrac{1}{6}.\dfrac{6}{56}\)

\(A=\dfrac{1}{1}.\dfrac{1}{56}\)

\(A=\dfrac{1}{56}\)

\(B=\dfrac{45}{12.21}+\dfrac{45}{21.30}-\dfrac{40}{24.34}-\dfrac{40}{34.44}-\dfrac{40}{44.54}-\dfrac{40}{54.64}\)

\(B=5\left(\dfrac{9}{12.21}+\dfrac{9}{21.30}\right)-4\left(\dfrac{10}{24.34}+\dfrac{10}{34.44}+\dfrac{10}{44.54}+\dfrac{10}{54.64}\right)\)

\(B=5\left(\dfrac{1}{12}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{30}\right)-4\left(\dfrac{1}{24}-\dfrac{1}{34}+\dfrac{1}{34}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{54}+\dfrac{1}{54}-\dfrac{1}{64}\right)\)\(B=5\left(\dfrac{5}{60}-\dfrac{2}{60}\right)-4\left(\dfrac{1}{24}-\dfrac{1}{64}\right)\)

\(B=5.\dfrac{3}{60}-\left(\dfrac{4}{24}-\dfrac{4}{64}\right)\)

\(B=5.\dfrac{1}{20}-\left(\dfrac{1}{6}-\dfrac{1}{16}\right)\)

\(B=\dfrac{5}{20}-\left(\dfrac{8}{48}-\dfrac{3}{48}\right)\)

\(B=\dfrac{1}{4}-\dfrac{5}{48}\)

\(B=\dfrac{12}{48}-\dfrac{5}{48}\)

\(B=\dfrac{7}{48}\)

\(\dfrac{A}{B}=\dfrac{1}{56}:\dfrac{7}{48}\)

\(\dfrac{A}{B}=\dfrac{1}{56}.\dfrac{48}{7}\)

\(\dfrac{A}{B}=\dfrac{1}{7}.\dfrac{6}{7}\)

\(\dfrac{A}{B}=\dfrac{6}{49}=\dfrac{48}{392}< \dfrac{49}{392}=\dfrac{1}{8}\)

\(\dfrac{A}{B}< \dfrac{1}{8}\)

Vậy \(\dfrac{A}{B}< \dfrac{1}{8}\)

Dinh Thi Hai Ha
Xem chi tiết
 Mashiro Shiina
13 tháng 7 2017 lúc 9:58

\(P=\dfrac{1000}{100-x}\)

\(P_{MAX}\Rightarrow P\in Z^+\)

\(\Rightarrow100-x=1\)

\(\Rightarrow x=100-1=99\)

\(\Rightarrow P_{MAX}=\dfrac{1000}{100-99}=1000\)

\(A=\dfrac{1}{8.14}+\dfrac{1}{14.20}+\dfrac{1}{20.26}+.....+\dfrac{1}{50.56}\)

\(A=\dfrac{1}{6}\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{26}+.....+\dfrac{1}{50}-\dfrac{1}{56}\right)\)

\(A=\dfrac{1}{6}.\left(\dfrac{1}{8}-\dfrac{1}{56}\right)=\dfrac{1}{6}.\dfrac{3}{28}=\dfrac{1}{56}\)

\(B=\dfrac{45}{12.21}+\dfrac{45}{21.30}-\dfrac{40}{24.34}-\dfrac{40}{34.44}-\dfrac{40}{44.54}-\dfrac{40}{54.64}\)

\(B=5\left(\dfrac{1}{12}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{30}\right)-5\left(\dfrac{1}{24}-\dfrac{1}{34}+\dfrac{1}{34}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{54}+\dfrac{1}{54}-\dfrac{1}{64}\right)\)

\(B=5\left(\dfrac{1}{12}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{30}+\dfrac{1}{24}-\dfrac{1}{34}+\dfrac{1}{34}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{54}+\dfrac{1}{54}-\dfrac{1}{64}\right)\)\(B=5\left(\dfrac{1}{12}-\dfrac{1}{64}\right)=5.\dfrac{13}{192}=\dfrac{65}{192}\)

\(\dfrac{A}{B}=\dfrac{1}{\dfrac{56}{\dfrac{65}{192}}}=\dfrac{24}{455}\)

\(\dfrac{1}{8}=\dfrac{3}{24}\)

\(\Rightarrow\dfrac{A}{B}< \dfrac{1}{8}\rightarrowđpcm\)

Nguyen tuan cuong
Xem chi tiết
Hà Thần Thái
Xem chi tiết
Pé ngốc nhí nhảnh
Xem chi tiết
Lê Nguyễn Hoàng Lâm
Xem chi tiết
Đỗ Thị Ngọc Khánh
Xem chi tiết
Phạm Ninh Đan
Xem chi tiết
Minzy
Xem chi tiết