Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
zNkókz zKhôngz zNảnz
Xem chi tiết
tranquockhanh
Xem chi tiết
Tạ Quang Duy
3 tháng 10 2015 lúc 6:00

tính chất của đẳng thức + cm đẳng thức

Pham Ngoc Bao Chau
13 tháng 7 2016 lúc 14:58

kho qua

kiều nguyễn hoài thương
15 tháng 8 2016 lúc 20:52

mình cũng đang vướng bài đay nè

Yuki
Xem chi tiết
Yuki
2 tháng 11 2015 lúc 21:35

với a.b.c.d khác 0 ta có : 

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\Rightarrow\frac{a+b}{c+d}=\frac{b}{d}\left(1\right)\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\Rightarrow\frac{a-b}{c-d}=\frac{b}{d}\left(2\right)\)

Từ 1 và 2 \(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)          lm thế này đúng ko z 

Đào Anh Phương
Xem chi tiết
Ngô Chi Lan
31 tháng 8 2020 lúc 8:26

Bài làm:

Vì a,b,c khác 0 nên:

Ta có: \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)

\(\Leftrightarrow\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\)  (1) (chia cả 3 vế cho abc)

Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\left(1\right)=\frac{x+y-z-x}{ab-ca}=\frac{y+z-x-y}{bc-ab}=\frac{z+x-y-z}{ca-bc}\)

\(=\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)

=> đpcm

Khách vãng lai đã xóa
Trịnh Thục Khuê
15 tháng 11 2023 lúc 19:46

Bài làm:

Vì a,b,c khác 0 nên:

Ta có: a(y+z)=b(z+x)=c(x+y)�(�+�)=�(�+�)=�(�+�)

⇔y+zbc=z+xca=x+yab⇔�+���=�+���=�+���  (1) (chia cả 3 vế cho abc)

Áp dụng t/c dãy tỉ số bằng nhau ta được:
(1)=x+y−z−xab−ca=y+z−x−ybc−ab=z+x−y−zca−bc(1)=�+�−�−���−��=�+�−�−���−��=�+�−�−���−��

=y−za(b−c)=z−xb(c−a)=x−yc(a−b)=�−��(�−�)=�−��(�−�)=�−��(�−�)

=> đpcm

Trịnh Thục Khuê
15 tháng 11 2023 lúc 19:51

j

 

Son Goku
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
alibaba nguyễn
1 tháng 8 2019 lúc 9:04

Không. Ví dụ 1; 2; 3 đôi 1 khách nhau nhưng mà \(3-2=1\)

Nguyễn Cát Anh
Xem chi tiết
nguyen quy duong
Xem chi tiết
saadaa
Xem chi tiết
Hoàng Lê Bảo Ngọc
16 tháng 8 2016 lúc 14:45

Ta có : \(\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}\right)-\left(\frac{a}{b}+\frac{b}{c}\right)=\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}\right)-2\left(\frac{a}{b}+\frac{b}{c}\right)+\left(\frac{a}{b}+\frac{b}{c}\right)\ge\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}\right)-2\left(\frac{a}{b}+\frac{b}{c}\right)+2\)Cần chứng minh \(\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}\right)-2\left(\frac{a}{b}+\frac{b}{c}\right)+2\ge0\). Điều này tương đương với : 

\(\left(\frac{a}{b}-1\right)^2+\left(\frac{b}{c}-1\right)^2\ge0\) (luôn đúng)

Làm tương tự với các lần tách còn lại