cmr nếu a = b. c (với a khác b, a khác c) thì a+b/a-b = c + a/ c- a
CHỨNG MINH RẰNG NẾU A^2=BC(VỚI A KHÁC B VÀ A KHÁC C) THÌ A+B/A-B=A+C/C+A/C-A
NHANH LÊN CÁC BẠN AI NHANH MINK TICK
chứng minh rằng nếu a2=bc (với a khác b,c) thì a+b/a-b=c+a/c-a
mình cũng đang vướng bài đay nè
nếu \(\frac{a}{b}=\frac{c}{d}\) khác 1 thì \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) với a,b,c,d khác 0
với a.b.c.d khác 0 ta có :
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\Rightarrow\frac{a+b}{c+d}=\frac{b}{d}\left(1\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\Rightarrow\frac{a-b}{c-d}=\frac{b}{d}\left(2\right)\)
Từ 1 và 2 \(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm) lm thế này đúng ko z
Chứng minh rằng: Nếu a(y + z) = b(z + x) = c(x + y), trong đó a; b; c là các số khác nhau và khác 0 thì:
\(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
Bài làm:
Vì a,b,c khác 0 nên:
Ta có: \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)
\(\Leftrightarrow\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\) (1) (chia cả 3 vế cho abc)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\left(1\right)=\frac{x+y-z-x}{ab-ca}=\frac{y+z-x-y}{bc-ab}=\frac{z+x-y-z}{ca-bc}\)
\(=\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
=> đpcm
Bài làm:
Vì a,b,c khác 0 nên:
Ta có: a(y+z)=b(z+x)=c(x+y)�(�+�)=�(�+�)=�(�+�)
⇔y+zbc=z+xca=x+yab⇔�+���=�+���=�+��� (1) (chia cả 3 vế cho abc)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
(1)=x+y−z−xab−ca=y+z−x−ybc−ab=z+x−y−zca−bc(1)=�+�−�−���−��=�+�−�−���−��=�+�−�−���−��
=y−za(b−c)=z−xb(c−a)=x−yc(a−b)=�−��(�−�)=�−��(�−�)=�−��(�−�)
=> đpcm
C/m neu a(y+z)=b(z+x)=c(x+y) [a khác b khác c và khác 0] thì
y-z/a(b-c)=z-x/b(c-a)=a)=x-y/c(a-b)
a,b,c đôi 1 khác nhau thì a-b khác c đúng ko vậy
Không. Ví dụ 1; 2; 3 đôi 1 khách nhau nhưng mà \(3-2=1\)
Xét đa thức f(x)=ax^2+bx+c. CMR nếu f(x) có 3 nghiệm khác nhau x1,x2,x3 thì a=b=c=0
1)Rút gọn biểu thức
a)(a+b-c)^2+(a-b+c)^2-2(b-c)^2
b)(a+b+c)^2+(a-b-c)^2+(b-c-a)^2+(c-a-b)^2
c)(a+b+c+d)^2+(a+b-c-d)^2+(a+c-b-d)^2+(a+d-c-b)^2
2)CMR:(a^2+b^2+c^2)(x^2+y^2+z^2)=(ax+by+cz) với x,y,z khác 0 thì x/a=b/y=c/z
3)Cho (a+b+c)^2=3(a^2+b^2+c^2).CMR a=b=c
4)Cho (a+b+c)^2=3(ab+bc+ca).CMR a=b=c
cmr \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
với mọi a,b,c khác 0
cm=cauchy
Ta có : \(\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}\right)-\left(\frac{a}{b}+\frac{b}{c}\right)=\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}\right)-2\left(\frac{a}{b}+\frac{b}{c}\right)+\left(\frac{a}{b}+\frac{b}{c}\right)\ge\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}\right)-2\left(\frac{a}{b}+\frac{b}{c}\right)+2\)Cần chứng minh \(\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}\right)-2\left(\frac{a}{b}+\frac{b}{c}\right)+2\ge0\). Điều này tương đương với :
\(\left(\frac{a}{b}-1\right)^2+\left(\frac{b}{c}-1\right)^2\ge0\) (luôn đúng)
Làm tương tự với các lần tách còn lại