tìm GTNN của A = \(\frac{x^2+y^2}{x-y}với;x>y;vàxy=1.\)
Tìm GTNN của A=\(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\)( với x,y\(\ne\)0)
\(A=\left(\frac{2xy}{x^2+y^2}\right)^2+\frac{x^4+y^4+2\left(xy\right)^2}{\left(xy\right)^2}-2=4\left(\frac{xy}{x^2+y^2}\right)^2+\left(\frac{x^2+y^2}{xy}\right)^2-2\)
\(=\left(\frac{2xy}{x^2+y^2}\right)^2+\left(\frac{x^2+y^2}{2xy}\right)^2+3\left(\frac{x^2+y^2}{2xy}\right)^2-2\)
\(\ge2\sqrt{\left(\frac{2xy}{x^2+y^2}\right)^2.\left(\frac{x^2+y^2}{2xy}\right)^2}+3\left(\frac{2xy}{2xy}\right)^2-2=3\)
Tìm GTNN của \(A=\frac{x^2+y^2}{x-y}\) với x>y>0,xy=1
A-2=\(\left(\sqrt{x-y}-\sqrt{\frac{2}{x-y}}\right)^2+2\sqrt{2}\)
A>=2\(\left(1+\sqrt{2}\right)\)
dang thuc xay ra khi
x-y=\(\sqrt{2}\)
Tìm GTNN của A=\(\frac{x^2}{y^2}+\frac{y^2}{x^2}-2\left(\frac{x}{y}+\frac{y}{x}\right)+2006\)
Tìm GTNN của A = \(\frac{3}{x}+\frac{1}{\left(x-2\right)^2}\) với x>2
Cho x, y dương vào x+y\(\ge\)6
Tìm GTNN của P=3x+2y\(+\frac{6}{x}+\frac{8}{y}\)
Các bn giải hộ mk ạ :D
Câu trên mình thấy sai sai vì nếu x càng lớn thì A càng nhỏ , bạn xem lại đề nhé
Câu 2
\(\frac{3}{2}x+\frac{6}{x}\ge6\); \(\frac{1}{2}y+\frac{8}{y}\ge4\)
\(\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)
Cộng các bĐT trên
=> \(3x+2y+\frac{6}{x}+\frac{8}{y}\ge9+6+4=19\)
MinP=19 khi x=2;y=4
\(\text{Tìm GTNN của : }A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\text{ với }x;y>0\text{ và }x+y<1\)
Mọi người ơi giúp em với ạ. Em cần trước 16h thứ 4 ngày 22/7/2020 ạ. Dùng BĐT Cosy ạ. Cảm ơn mọi người nhiều ạ
1) Cho x,y>0 thỏa mãn x+y=1. Tìm GTNN của biểu thức \(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
2) Cho x,y>0 thỏa mãn \(x+y\le1\). Tìm GTNN của biểu thức \(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
3) Cho a,b>0 thỏa mãn \(a+b\le1\).Tìm GTNN của biểu thức \(A=\frac{1}{a^2+b^2}+\frac{1}{b}\)
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
1) có \(2y\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow\left(\sqrt{xy}+\frac{1}{4\sqrt{xy}}\right)^2+\frac{15}{16xy}+\frac{1}{2}\ge\frac{15}{16}\cdot4+\frac{1}{2}=\frac{17}{4}\)
Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)
tìm GTNN của A = \(\frac{4y^2-4x^2+6xy}{x^2+y^2}\)
với 0 <x<1 tìm GTNN của C =\(\frac{x}{1-x}+\frac{5}{x}\)
tìm GTLN của D = 3x^2 ( 5 - 3x^2 )
Tìm GTNN của:
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\text{ với }x>0;y>0\text{ và }x+y<1\)
Điểm rơi: \(x=y=\frac{1}{2}.\)
\(A=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)
\(\ge\frac{1}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)
\(=\frac{1}{\left(x+y\right)^2}+2+\frac{5}{\left(x+y\right)^2}\ge2+\frac{6}{1^2}=8\)
Với x,y,z,t >0 thỏa mãn: x+y+z+t =4. Tìm GTNN của biểu thức:
A=\(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}+\frac{1}{t^2+1}\)
Bài này dùng Cô si ngược dấu:
Áp dụng BĐT Cô si:\(\frac{1}{x^2+1}=1-\frac{x^2}{x^2+1}\ge1-\frac{x^2}{2x}=1-\frac{x}{2}\)
Tương tự với ba BĐT còn lại và cộng theo vế ta được:\(VT\ge4-\frac{x+y+z+t}{2}=2\)
Dấu "=' xảy ra tại a = b = c = 1
Vậy min A = 2 khi và chỉ khi a = b = c = 1
tth ngược dấu nhé
\(A=\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}+\frac{1}{t^2+1}\)
\(\Leftrightarrow\)\(-A+4=\left(1-\frac{1}{x^2+1}\right)+\left(1-\frac{1}{y^2+1}\right)+\left(1-\frac{1}{z^2+1}\right)+\left(1-\frac{1}{t^2+1}\right)\)
\(\Leftrightarrow\)\(-A+4\ge1-\frac{x}{2}+1-\frac{y}{2}+1-\frac{z}{2}+1-\frac{t}{2}=4-\frac{x+y+z+t}{2}=2\)
\(\Leftrightarrow\)\(-A+4\ge2\)
\(\Leftrightarrow\)\(A\le2\)
Phùng Minh Quân ông ms ngược dấu á!bài người ta tìm gtnn mừ