cho tam giác ABC là tam giác nhọn , BH và CK là đường cao cắt nhau tại I Gọi M,N lần lượt là trung điểm của BC và AI CMR MN vuông góc với HK
Bài 1 :Cho tam giác ABC nhọn, các đường cao BH,CK. Gọi D và E lần lượt là chân đường vuông góc kẻ từ B,C xuống đường thẳng HK. Chứng minh DK=EH
Bài 2 : Cho tam giác ABC vuông tại A, đường cao AH.Qua trung điểm M của cạnh AC, kẻ MN vuông góc với BC tại N. Gọi K là trung điểm AH. Chứng minh BK vuông góc với AN
Bài 1:
a: Ta có: ΔBKC vuông tại K
mà KM là đường trung tuyến
nên KM=BC/2(1)
Ta có: ΔBHC vuông tại H
mà HM là đường trung tuyến
nên HM=BC/2(2)
Từ (1)và (2) suy ra MH=MK
hay ΔMHK cân tại M
b: Kẻ MN vuông góc với HK
=>N là trung điểm của HK
Xét hình thang CBDE có
M là trung điểm của BC
MN//DB//EC
DO đó: N là trung điểm của DE
=>DK=HE
Cho tam giác ABC nhọn, có 3 đường cao AD, BE, CF cắt nhau tại H. Gọi M, N là
trung điểm của BC và AH. Gọi I là giao điểm của MN và EF,đường phân giác góc A cắt MN tại K.
a)CMR: MN vuông góc với EF
b)CMR: NHI = HMI
c) CMR: HK là phân giác góc EHC.
Cho tam giác ABC nhọn (AB<AC). các đường cao AE , BF cắt nhau tại H. gọi M là trung điểm của BC qua H vẽ đường thẳng a vuông góc với HM , a cắt AB , Ac lần lượt tại I và K. a) cm: Tam giác ABC ~ Tam giác EFC b) Qua C kẻ đường thẳng b song song với IK , b cắt AH, AB theo thứ tự tại N và D . cm : NC=ND và HI=HK c) Gọi G là giao điểm của CH và AB ,cm: AH/HE + BH/HF + CH/HG > 6
1, Cho tam giác nhọn ABC co H là trực tâm, gọi M,N lần lượt là trung điểm của BC và AH. Đường phân giác trong góc A cắt MN tại K. CM AK vuông góc vs HK
2, Cho tam giác ABC nội tiếp đường tròn (O), Gọi AH, AD lần lượt là đường cao, đường phan giác trong của tam giác ABC (H,D thuộc BC). Tia AD cắt (O) tại E, tia EH cắt (O) tại F vaf tia FD cắt (O) tại K. CM AK là đường kính của (O)
Từng bài 1 thôi bạn!
vẽ trên đt thông cảm!
Do đường tròn ngoại tiếp tam giác ABC có tâm là O
Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)
Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\))
Mà AK là phân giác của \(\widehat{BAC}\)
=> AK là phân giác
\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)
Theo bổ đề trên ta có tứ giác ANMO là hình bình hành
=> HK//AO
=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)
Hay tam giác NAK cân tại N mà N là trung điểm AH
=> AN=NH=NK
=> \(\Delta AHK\)vuông tại K
Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân
Cho tam giác ABC nhọn , đường cao BH , CK cắt nhau tại E . Qua B kẻ đường thẳng Bx vuông góc với BA , qua C kẻ đường thẳng Cy vuông góc với AC , Bx và Cy cắt nhau tại D
a. Tứ giác BDCE là hình gì
b. Gọi M là trung điểm của BC CMR M là trung điểm của ED
c. Nếu DE đi qua A thì ABC là tam giác gì
d. Tìm mối liên hệ giữa góc A và góc D của tứ giác ABCD
a: Xét tứ giác BDCE có
BD//CE
BE//CD
Do đó: BDCE là hình bình hành
b: Ta có: BDCE là hình bình hành
nên BC cắt DE tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của DE
d: Xét tứ giác ABDC có
\(\widehat{ABD}+\widehat{ACD}=180^0\)
Do đó: ABDC là tứ giác nội tiếp
Suy ra: \(\widehat{A}+\widehat{D}=180^0\)
Cho tam giác ABC nhọn (AB<AC). các đường cao AE , BF cắt nhau tại H. gọi M là trung điểm của BC qua H vẽ đường thẳng a vuông góc với HM , a cắt AB , Ac lần lượt tại I và K.
a) cm: Tam giác ABC ~ Tam giác EFC
b) Qua C kẻ đường thẳng b song song với IK , b cắt AH, AB theo thứ tự tại N và D . cm : NC=ND và HI=HK
c) Gọi G là giao điểm của CH và AB ,cm:
AH/HE + BH/HF + CH/HG > 6
Cho tam giác ABC nhọn (AB<AC). các đường cao AE , BF cắt nhau tại H. gọi M là trung điểm của BC qua H vẽ đường thẳng a vuông góc với HM , a cắt AB , Ac lần lượt tại I và K.
a) cm: Tam giác ABC ~ Tam giác EFC
b) Qua C kẻ đường thẳng b song song với IK , b cắt AH, AB theo thứ tự tại N và D . cm : NC=ND và HI=HK
c) Gọi G là giao điểm của CH và AB ,cm:
AH/HE + BH/HF + CH/HG > 6
Cho tam giác ABC nhọn (AB<AC). các đường cao AE , BF cắt nhau tại H. gọi M là trung điểm của BC qua H vẽ đường thẳng a vuông góc với HM , a cắt AB , Ac lần lượt tại I và K.
a) cm: Tam giác ABC ~ Tam giác EFC
b) Qua C kẻ đường thẳng b song song với IK , b cắt AH, AB theo thứ tự tại N và D . cm : NC=ND và HI=HK
c) Gọi G là giao điểm của CH và AB ,cm:
AH/HE + BH/HF + CH/HG > 6