Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cristiano Ronaldo
Xem chi tiết
Nguyễn Anh Quân
21 tháng 11 2017 lúc 21:43

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

Cristiano Ronaldo
21 tháng 11 2017 lúc 21:44

tiếp đi bạn 

như phạm
Xem chi tiết
Nguyệt
2 tháng 12 2018 lúc 21:46

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

Nguyệt
2 tháng 12 2018 lúc 21:51

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

như phạm
3 tháng 12 2018 lúc 0:03

Thanks. <3

Nguyễn Linh Khánh
Xem chi tiết
NHỮNG MẢNH GHÉP CẢM XÚC
19 tháng 5 2016 lúc 7:59

\(B=\frac{3x^2-2x+3}{x^2+1}=3-\frac{2x}{x^2+1}\)

* Để B lớn nhất thì \(\frac{2x}{x^2-1}\)là số không âm nhỏ nhất\(\Rightarrow\frac{2x}{x^2+1}=0\Rightarrow x=0\Rightarrow B=3\)

Vậy GTLN của B là 3

Trí Phạm
Xem chi tiết
Minh Nguyen
26 tháng 6 2020 lúc 22:38

a) \(A=x^2+2y^2=3x-y+6\)

\(A=\left(x^2+3x+\frac{9}{4}\right)+\left(2y^2-y+\frac{1}{8}\right)+\frac{29}{8}\)

\(A=\left(x+\frac{3}{2}\right)^2+\left(\sqrt{2}y-\frac{1}{2\sqrt{2}}\right)^2+\frac{29}{8}\ge\frac{29}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\\sqrt{2}y=\frac{1}{2\sqrt{2}}\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{1}{4}\end{cases}}}\)

Vậy \(Min_A=\frac{29}{8}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{1}{4}\end{cases}}\)

b) \(B=\frac{x^2-1}{x^2+1}=1-\frac{2}{x^2+1}\)

Để B min \(\Leftrightarrow\frac{2}{x^2+1}\)max \(\Leftrightarrow x^2+1\)min

Mà \(x^2+1\ge1\)

Dấu " = " xảy ra : \(\Leftrightarrow x=0\)

Vậy \(Min_B=-1\Leftrightarrow x=0\)

Khách vãng lai đã xóa
Nguyễn Duy Long
Xem chi tiết
LIVERPOOL
27 tháng 7 2017 lúc 8:59

1,2 kiểu gì ẹ

3,

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge2\)

=> \(\frac{1}{x+1}\ge\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)

Làm tương tự rồi nhân lại ta được \(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

=> \(xyz\le\frac{1}{8}\).Dấu bằng khi x=y=z=1/2

4.

Ta đi CM: \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2}\) <=> \(a^4+a\left(b+c\right)^3\le\left(a^2+b^2+c^2\right)^2\)

<=> \(a\left(b+c\right)^3\le2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\)

Áp dụng BDT COSI thì

\(2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a^2\left(b+c\right)^2+\frac{\left(b+c\right)^2}{4}\ge a\left(b+c\right)^3\)

Do đó có dpcm

Làm tương tự rồi cộng lại ta đc bdt ban đầu

Dấu bằng xảy ra khi a=b=c

Phạm Văn Hà
28 tháng 7 2017 lúc 20:40

con 2 chưa cho dương nhờ

Nguyễn Duy Long
30 tháng 7 2017 lúc 21:01

giúp đê mọi người....

Nguyễn Phạm Nguyễn
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
30 tháng 6 2017 lúc 18:53

Ta có : \(\frac{x^2-3x+3}{x^2-2x+1}=\frac{\left(x^2-2x+1\right)-x+1+1}{\left(x-1\right)^2}\)\(=\frac{\left(x-1\right)^2-\left(x-1\right)+1}{\left(x-1\right)^2}=\frac{1}{\left(x-1\right)^2}-\frac{1}{x-1}+1\)

\(=\frac{1}{\left(x-1\right)^2}-2.\frac{1}{x-1}.\frac{1}{2}+\frac{1}{4}-\frac{3}{4}\)

\(=\left(\frac{1}{x-1}-\frac{1}{2}\right)^2+\frac{3}{4}\)

Mà : \(\left(\frac{1}{x-1}-\frac{1}{2}\right)^2\ge0\forall x\)

Nên : \(\left(\frac{1}{x-1}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Vậy GTNN của biểu thức là : \(\frac{3}{4}\) khi và chỉ khi x = 3

Phi DU
Xem chi tiết
ngonhuminh
13 tháng 2 2017 lúc 22:33

đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)

\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)

đẳng thức khi y=-6 thủa mãn đk (*)

Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)

Hồ Ngọc Minh Châu Võ
Xem chi tiết
linh lê
Xem chi tiết