Cho A ngoài ( O; R ). vẽ cát tuyến ABC và tiếp tuyến AM với (O), M là tiếp điểm. C/m: AB+AC \(\ge\) 2AM
Giúp mình với !!
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B ∈ (O),C ∈ (O'). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I
a) Chứng minh rằng ∠BAC = 90 0
a) Ta có:
IA = IB = IC
Tam giác BAC có AI là trung tuyến và AI = BC/2
⇒ Tam giác BAC vuông tại A hay ∠BAC = 90 0
Cho hai đường tròn (O; 9cm) và (O' 4cm) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B ∈ (O), C ∈ (O’). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I.Tính BC
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A, Kẻ tiếp tuyến chung ngoài BC, B ϵ (O), C ϵ (O'). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I.
Chứng minh rằng ∠BAC = 90o
Theo tính chất hai tiếp tuyến cắt nhau ta được IA = IB, IA = IC.
tam giác ABC có đường trung tuyến AI = 1/2 BC nên là tam giác vuông
vậy B A C ^ = 90 o
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B ∈ (O),C ∈ (O'). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I
b) Tính số đo góc OIO'
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A, Kẻ tiếp tuyến chung ngoài BC, B ϵ (O), C ϵ (O'). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I.
Tính số đo góc OIO'
Theo tính chất hai tiếp tuyến cắt nhau ta có IO, IO' là các tia phân giác của hai góc kề bù AIB, AIC nên:
O I O ' ^ = O I A ^ + O ' I A ^ = 1 2 A I B ^ + 1 2 A I C ^ = 1 2 A I B ^ + A I C ^
Vậy O I O ' ^ = 90 o
Cho hai đường tròn (O,R)và (O`,r) tiếp xúc ngoài tại A kẻ tiếp tuyến chung ngoài DE của (O)và (O`), D€(O),E€(O')tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài DE ở I
a,tính số đo góc OIO'.
b, chứng minh OO' là tiếp tuyến của đường tròn đường kính DE
c, tính độ dài DE theo R và r
a: Xét (O) có
ID,IA là các tiếp tuyến
Do đó: IO là phân giác của góc DIA
=>\(\widehat{DIA}=2\cdot\widehat{OIA}\)
Xét (O') có
IA,IE là các tiếp tuyến
Do đó: IO' là phân giác của góc AIE
=>\(\widehat{AIE}=2\cdot\widehat{AIO'}\)
Ta có: \(\widehat{DIA}+\widehat{EIA}=180^0\)(hai góc kề bù)
=>\(2\left(\widehat{OIA}+\widehat{O'IA}\right)=180^0\)
=>\(2\cdot\widehat{OIO'}=180^0\)
=>\(\widehat{OIO'}=90^0\)
b: Xét (O) có
ID,IA là các tiếp tuyến
Do đó: ID=IA
Xét (O') có
IA,IE là các tiếp tuyến
Do đó: IA=IE
Ta có: IA=IE
ID=IA
Do đó: ID=IE
=>I là trung điểm của DE
=>I là tâm đường tròn đường kính DE
Xét ΔDAE có
AI là bán kính
\(AI=\dfrac{DE}{2}\)
Do đó: ΔADE vuông tại A
=>A nằm trên (I)
Xét (I) có
IA là bán kính
O'O\(\perp\)IA tại A
Do đó: OO' là tiếp tuyến của (I)
=>O'O là tiếp tuyến của đường tròn đường kính DE
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A, Kẻ tiếp tuyến chung ngoài BC, B ϵ (O), C ϵ (O'). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I.
Tính độ dài BC, biết OA = 9cm, O'A = 4cm.
ΔOIO' vuông tại A có IA là đường cao nên theo hệ thức giữa cạnh và đường cao ta có:
IA2 = AO.AO' = 9.4 = 36
=> IA = 6 (cm)
Vậy BC = 2.IA = 2.6 = 12 (cm)
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B ∈ (O),C ∈ (O'). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I
c) Tính độ dài BC, biết OA = 9cm, O'A = 4 cm
c) Xét tam giác OIO' vuông tại I, IA là đường cao có:
IA 2 = O'A.OA = 4.9 = 36 ⇒ IA = 6 cm
Lại có: BC = 2 AI ⇒ BC = 12 (cm)
Cho (O) bk 9cm và (O') bk 4cm tiếp xúc ngoài tại C. Gọi tiếp tuyến chung ngoài BA với B thuộc (O), A thuộc (O'). Vẽ (I;r) tiếp xúc ngoài với (O) và (O') và tiếp xúc với AB tại N. Tính r
Cho hai đường tròn (O), (O') tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B∈(O);C∈(O′)B∈(O);C∈(O′). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I
a) Chứng minh rằng ˆBAC=900BAC^=900
b) Tính số đo góc OIO'
c) Tính độ dài BC, biết OA = 9cm, O'A = 4cm