\(5x\cdot\left(x-\frac{1}{3}\right)=0\)
\(\left(x+\frac{1}{4}\right)\cdot\left(x-\frac{3}{7}\right)=0\)
giup minh voi
\(\left(\frac{1}{7}\cdot x-\frac{2}{7}\right)\cdot\left(-\frac{1}{5}\cdot x+\frac{3}{5}\right)\cdot\left(\frac{1}{3}\cdot x+\frac{4}{3}\right)=0\)
( 1/7 . x - 2/7 ) . ( -1.5 . x + 3/5 ) . ( 1/ 3 . x + 4/3) + 0
<=> +) 1/7 . x - 2/7 = 0 +) (- 1 / 5) . x +3/5 = 0 +) 1/ 3 . x + 4/ 3 = 0
x = 2 x = 3 x = 4
Vậy x = 2 : x = 3 ; x=4
a) \(\frac{1}{20}\left(x-\frac{8}{15}\right)=\frac{-1}{30}\)
b) \(\left(28+\frac{1}{5}\right)\cdot\left(\frac{3}{5}\cdot x+\frac{4}{7}\right)=0\)
c)\(\left(x+3\right)\cdot\left(x-4\right)< 0\)
\(\frac{1}{20}\left(x-\frac{8}{15}\right)=-\frac{1}{30}\) \(\left(28+\frac{1}{5}\right).\left(\frac{3}{5}.x+\frac{4}{7}\right)=0\)
\(x-\frac{8}{15}=-\frac{1}{30}:\frac{1}{20}\) \(\frac{141}{5}.\left(\frac{3}{5}.x+\frac{4}{7}\right)=0\)
\(x-\frac{8}{15}=-\frac{2}{3}\) \(\frac{3}{5}.x+\frac{4}{7}=0\)
\(x=-\frac{2}{3}+\frac{8}{15}\) \(\frac{3}{5}.x=-\frac{4}{7}\)
\(x=-\frac{2}{15}\) \(x=-\frac{20}{21}\)
TÌM X
\(\left(\frac{1}{7}x-\frac{2}{7}\right)\cdot\left(-\frac{1}{5}x+\frac{3}{5}\right)\cdot\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
Vi \(\left(\frac{1}{7}x-\frac{2}{7}\right)\cdot\left(-\frac{1}{5}x+\frac{3}{5}\right)\cdot\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{7}x-\frac{2}{7}=0\\-\frac{1}{5}x+\frac{3}{5}=0\\\frac{1}{3}x+\frac{4}{3}=0\end{cases}\Rightarrow\hept{\begin{cases}\frac{1}{7}x=\frac{2}{7}\\-\frac{1}{5}x=-\frac{3}{5}\\\frac{1}{3}x=-\frac{4}{3}\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\x=3\\x=-4\end{cases}}}\)
Vậy \(x\in\left\{-4;3;2\right\}\)
\(\Rightarrow\frac{1}{7}x-\frac{2}{7}=0\text{ hoặc }-\frac{1}{5}x+\frac{3}{5}=0\text{ hoặc }\frac{1}{3}x+\frac{4}{3}=0\)
\(\Rightarrow x=2\text{ hoặc }x=3\text{ hoặc }x=-4\)
Vậy tập nghiệm của pt là \(S=\left\{2;3;-4\right\}\)
Tìm x biết :
a, ( 4x - 9 ) . ( 2,5 + \(\frac{-7}{3}\). x ) = 0
b, \(\frac{1}{x\cdot\left(x+1\right)}\cdot\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}\cdot\frac{1}{\left(x+2\right)\cdot\left(x+3\right)}-\frac{1}{x}=\frac{1}{2015}\)
a)
( 4x - 9 ) ( 2,5 + (-7/3) . x ) = 0
\(\Rightarrow\orbr{\begin{cases}4x-9=0\\2,5+\frac{-7}{3}x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{9}{4}\\x=\frac{15}{14}\end{cases}}\)
P/s: đợi xíu làm câu b
b) \(\frac{1}{x\left(x+1\right)}\cdot\frac{1}{\left(x+1\right)\left(x+2\right)}\cdot\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{-1}{x+3}=\frac{1}{2015}\)
\(\Leftrightarrow x+3=-2015\)
\(\Leftrightarrow x=-2018\)
Vậy,.........
A/ Ta có số nào nhân với 0 cx = 0
Vậy từ đó suy ra 2 trường hợp
TH1\(4x-9=0\)
\(=>x=\frac{9}{4}\)
TH2 \(2,5+-\frac{7}{3}x=0\)
\(=>x=\frac{15}{14}\)
tìm x
a) \(\frac{x-1}{2}+\frac{x-2}{5}=\frac{1}{4}+\frac{x-7}{10}\)
b) \(3-\frac{2}{2x-3}=\frac{2}{5}+\frac{1}{2x-3}-\frac{3}{2}\)
c)\(7\cdot\left(x-1\right)+2x\cdot\left(1-x\right)=0\)
d) \(\frac{x+1}{2008}+\frac{x+2}{2017}+\frac{x+3}{2016}=\frac{x+10}{2009}+\frac{x+11}{2008}+\frac{x+12}{2007}\)
e) \(\frac{2}{\left(x-1\right)\cdot\left(x-3\right)}+\frac{5}{\left(x-3\right)\cdot\left(x-8\right)}+\frac{12}{\left(x-8\right)\cdot\left(x-20\right)}-\frac{1}{x-20}=\frac{-3}{4}\)
Giải phương trình
a. \(\frac{1}{27}\cdot\left(x-3\right)^3-\frac{1}{125}\cdot\left(x-5\right)^3=0\)
b.\(125x^3-\left(2x+1\right)^3-\left(3x-1\right)^3=0\)
c.\(\left(x-3\right)^3+\left(x+1\right)^3=8\cdot\left(x-1\right)^3\)
d.\(\left(x^2-3x+2\right)\cdot\left(x^2+15x+56\right)+8=0\)
e.\(\left(2x^2-3x+1\right)\cdot\left(2x^2+5x+1\right)-9x^2=0\)
f.\(\left(x+6\right)^4+\left(x+8\right)^4=272\)
TÌM x
\(\left(\left(\frac{3}{4}\cdot x+5\right)-\left(\frac{2}{3}\cdot x-4\right)-\left(\frac{1}{6}\cdot x+1\right)\right)=\left(\frac{1}{3}\cdot x+4\right)-\left(\frac{1}{3}-3\right)\)
\(\Rightarrow\frac{3}{4}x+5-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}+3\)+3
\(\Rightarrow\left(\frac{3}{4}x-\frac{2}{3}x-\frac{1}{6}x\right)+\left(5+4-1\right)=\frac{1}{3}x+\left(4-\frac{1}{3}+3\right)\)
=>\(\frac{-1}{12}x+8=\frac{1}{3}x+\frac{20}{3}\)\(\Rightarrow\frac{-1}{12}x+8-\frac{1}{3}x=\frac{20}{3}\)
\(\Rightarrow\left(\frac{-1}{12}-\frac{1}{3}\right)x+8=\frac{20}{3}\)
\(\Rightarrow\frac{-5}{12}x+8=\frac{20}{3}\Rightarrow\frac{-5}{12}x=\frac{20}{3}-8\)
\(\Rightarrow\frac{-5}{12}x=\frac{-4}{3}\Rightarrow x=\frac{-4}{3}:\frac{-5}{12}=\frac{16}{5}\)
Bài 1: Tìm x biết:
a, \(x.\cdot\left(\frac{1}{4}+\frac{1}{5}\right)-\left(\frac{1}{7}+\frac{1}{8}\right)=0\)
b, \(\left(5x-1\right).\left(2x-\frac{1}{3}\right)=0\)
c, \(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)
d, \(\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}\)
e, \(\frac{-3}{4}-\left|\frac{4}{5}-x\right|=-1\)
b) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\2x-\frac{1}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\2x=\frac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=\frac{1}{6}\end{matrix}\right.\)
e, \(-\frac{3}{4}-\left|\frac{4}{5}-x\right|=-1\)
\(\Leftrightarrow\left|\frac{4}{5}-x\right|=-\frac{3}{4}-\left(-1\right)\)
\(\Leftrightarrow\left|\frac{4}{5}-x\right|=\frac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{4}{5}-x=\frac{1}{4}\\\frac{4}{5}-x=-\frac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{15}\\x=1,05\end{matrix}\right.\)
Vậy ....
Tìm x, biết :
\(\left(3-\frac{1}{2}\cdot x\right)\cdot\left(\left|x+\frac{3}{4}\right|-\frac{5}{6}\right)=0\)
\(\left(3-\frac{1}{2}x\right)\left(\left|x+\frac{3}{4}\right|-\frac{5}{6}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3-\frac{1}{2}x=0\\\left|x+\frac{3}{4}\right|-\frac{5}{6}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=3\\\left|x+\frac{3}{4}\right|=\frac{5}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=6\\x=\frac{1}{12}\\x=\frac{-19}{12}\end{cases}}\)
\(\left(3-\frac{1}{2}x\right)\cdot\left(\left|x+\frac{3}{4}\right|-\frac{5}{6}\right)=0\)
\(\Rightarrow\hept{\begin{cases}3-\frac{1}{2}x=0\\\left|x+\frac{3}{4}\right|-\frac{5}{6}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=6\\x+\frac{3}{4}=\pm\frac{5}{6}\end{cases}}\)
Ta có
\(x+\frac{3}{4}=\pm\frac{5}{6}\)
\(\hept{\begin{cases}x+\frac{3}{4}=\frac{5}{6}\\x+\frac{3}{4}=-\frac{5}{6}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{12}\\x=-\frac{19}{12}\end{cases}}}\)
Vậy \(x\in\left\{3;\frac{1}{2};-\frac{19}{12}\right\}\)
\(\left(3-\frac{1}{2}.x\right).\left(|x+\frac{3}{4}|-\frac{5}{6}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3-\frac{1}{2}.x=0\\|x+\frac{3}{4}|-\frac{5}{6}=0\end{cases}\Rightarrow\orbr{\begin{cases}\frac{1}{2}.x=3\\|x+\frac{3}{4}|=\frac{5}{6}\end{cases}\Rightarrow}\orbr{\begin{cases}x=6\\x+\frac{3}{4}=\frac{5}{6}\end{cases}\Rightarrow}\orbr{\begin{cases}x=6\\x=\frac{1}{12}\end{cases}}}\)