Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lalisa manoban
Xem chi tiết
Khánh Ngọc
11 tháng 8 2020 lúc 9:36

\(60=3.4.5\)

Ta cần chứng minh xyz chia hết cho 3 ; 4 và 5

\(∗\)Giả sử cả x ; y và z đều không chia hết cho 3

Khi đó x ; y và z chia cho 3 dư 1 hoặc dư 2 => x2 ; y2 và z2 chia cho 3 dư 1

\(\Rightarrow x^2+y^2\equiv1+1=2\) ( mod 3 )

Vô lí vì  \(z^2\equiv1\) ( mod 3 )

Vậy tồn tại ít nhất 1 số chia hết cho 3, do đó \(xyz⋮3\) ( 1 )

\(∗\)Giả sử cả x ; y và z không chia hết cho 4

Khi đó x ; y và z chia cho 4 dư 1 ; 2 hoặc 3

- TH1 : Cả x ; y và z lẻ => x2 ; y2 và z2 chia 4 dư 1

\(\Rightarrow x^2+y^2\equiv1+1=2\) ( mod 4 ) ( loại ) 

- TH2 : Có ít nhất 2 số chẵn => xyz chia hết cho 4

- TH3 : Có 1 số chẵn và 2 số lẻ

+) Với x ; y lẻ thì  \(z^2=x^2+y^2\equiv1+1=2\) ( mod 4 ) ( loại do z chẵn nên \(z^2\equiv0\) ( mod 4 ) )

+) Với x ; z lẻ thì \(y^2=z^2-x^2\equiv\left(z-x\right)\left(z+x\right)\) .Ta có bảng sau : 

 z x z-
 4m + 1 4n + 1 4( m - n )
 4m + 3 4n + 1 4 ( n - n ) + 2

Các trường hợp khác tương tự

Ta luôn có \(y^2=\left(z-x\right)\left(z+x\right)⋮8\)  . Trong khi đó ykhông chia hết cho 4 nhưng lại chia hết cho 8 => Mâu thuẫn 

Vậy tồn tại ít nhất 1 số chia hết cho 4 \(\Rightarrow xyz⋮4\) ( 2 )

\(∗\)Giả sử cả x ; y và z không chia hết cho 5

Khi đó x ; y và z chia cho 5 dư 1 ; 2 ; 3 hoặc 4 => x2 ; y2 và z2 chia cho 5 dư 1 hoặc -1

- TH1 : \(x^2\equiv1\) ( mod 5 ) ; \(y^2\equiv1\) ( mod 5 ) \(\Rightarrow z^2=x^2+y^2\equiv2\) ( mod 5 ) ( loại )

- TH2 : \(x^2\equiv-1\) ( mod 5 ) ; \(y^2\equiv-1\) ( mod 5 ) \(\Rightarrow z^2=x^2+y^2\equiv-1\) ( mod 5 ) ( loại )

- TH3 : \(x^2\equiv1\) ( mod 5 ) ; \(y^2\equiv-1\) ( mod 5 ) \(\Rightarrow z^2=x^2+y^2\equiv0\) ( mod 5 ) ( loại )

Vậy tồn tại ít nhất một số chia hết cho 5 \(\Rightarrow xyz⋮5\) ( 3 )

Từ ( 1 ) ; ( 2 ) và ( 3 ) \(\Rightarrow xyz⋮3.4.5=60\left(đpcm\right)\)

Khách vãng lai đã xóa
lalisa manoban
11 tháng 8 2020 lúc 18:46

cảm ơn bạn Death Note đã giúp mk nhé!

Khách vãng lai đã xóa
gyeongjaeng
Xem chi tiết
do cong luan
Xem chi tiết
Trần Đức Mạnh
Xem chi tiết
Lê Anh Tú
22 tháng 6 2017 lúc 8:48

60 = 3.4.5 

Ta cần c/m xyz chia hết cho 3; 4 và 5. 

Xét x² + y² = z² 
 

* Giả sử cả x; y và z đều không chia hết cho 3. 

Khi đó x; y và z chia cho 3 dư 1 hoặc dư 2 => x²; y² và z² chia cho 3 dư 1. 

=> x² + y² ≡ 1 + 1 = 2 ( mod 3 ) 

Vô lí vì z² ≡ 1 ( mod 3 ) 

Vậy tồn tại ít nhất 1 số ⋮ 3, do đó xyz ⋮ 3 (♠) 

* Giả sử cả x; y và z không chia hết cho 4. 

Khi đó x; y và z chia cho 4 dư 1; 2 hoặc 3. 

*TH 1 : Cả x; y và z lẻ => x²; y² và z² chia 4 dư 1. 

=> z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại } 

*TH 2 : Có ít nhất 2 số chẵn => xyz⋮ 4 

*TH 3 : Có 1 số chẵn và 2 số lẻ. 

......+ Với x; y lẻ thì z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại do z chẵn nên z² ≡ 0 ( mod 4 )} 

......+ Với x; z lẻ thì y² = z² - x² ≡ (z - x)(z + x). Ta có bảng sau : 


........z...............x...........z-... 

....4m+1.......4n+1.........4(m-n)....... 

....4m+3.......4n+1.......4(m-n)+2....... 

Các trường hợp khác tương tự. Ta luôn có y² = (z-x)(z+x)⋮8. Trong khi y²⋮4 nhưng không⋮8 => mâu thuẫn. 
Vậy.......
Vậy tồn tại ít nhất 1 số⋮4 => xyz⋮4 (♣) 

* Giả sử cả x; y và z không chia hết cho 5. 
Khi đó x; y và z chia cho 5 dư 1; 2; 3 hoặc 4 => x²; y² và z² chia cho 5 dư 1 hoặc -1. 
+ TH 1 : x² ≡ 1 ( mod 5 ); y² ≡ 1 ( mod 5 ) => z² = x² + y² ≡ 2 ( mod 5 ) { loại } 
+ TH 2 : x² ≡ -1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ -1 ( mod 5 ) { loại } 
+ TH 3 : x² ≡ 1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ 0 ( mod 5 ) { loại } 

Vậy tồn tại ít nhất 1 số⋮5 => xyz⋮5 (♦) 
Từ (♠); (♣) và (♦) => xyz⋮3.4.5 = 60 ( đpcm )

Dương Diệu Linh
22 tháng 6 2017 lúc 8:54

Đây là toán lớp 9 mà bạn, bạn ghi đề bài lên google là ra ngay, mik vừa thử rồi

Dương Diệu Linh
22 tháng 6 2017 lúc 9:06

Lê Anh Tú đề bài chỉ yêu cầu chia hết cho 12 thôi bn làm hơi dài dòng rồi

lalisa manoban
Xem chi tiết
Nguyễn Hà Bảo Trâm
Xem chi tiết
Nguyễn Minh Khuê
Xem chi tiết
Nguyên Phương
Xem chi tiết
Trần Tuấn Hoàng
12 tháng 1 2023 lúc 14:47

Ta có: \(x^2+y^2+z^2=1\)

\(\Rightarrow x\le1,y\le1,z\le1\)

\(\Rightarrow x-1\le0,y-1\le0,z-1\le0\)

\(\Rightarrow x^2\left(x-1\right)\le0,y^2\left(y-1\right)\le0,z^2\left(z-1\right)\le0\) 

(vì \(x^2,y^2,z^2\ge0\))

\(\Rightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\).

hay \(x^3+y^3+z^3\le x^2+y^2+z^2=1\).

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x^2\left(x-1\right)=0\\y^2\left(y-1\right)=0\\z^2\left(z-1\right)=0\end{matrix}\right.\) và \(x^2+y^2+z^2=1\)

\(\Leftrightarrow\left(x,y,z\right)=\left(0;0;1\right)\) và các hoán vị.

Mặt khác theo giả thiết: \(x^3+y^3+z^3=1\).

\(\Rightarrow\left(x,y,z\right)=\left(0;0;1\right)\) và các hoán vị.

\(\Rightarrow xyz=0\)

nguyễn lan hương
Xem chi tiết