Tìm các số nguyên a, b và c sao cho (x+a)(x-2)-7=(x+b)(x+c) đúng với mọi giá trị của x
a) Tìm tất cả các tham số m nguyên để \(F\left(x\right)=\dfrac{7}{x^2+\dfrac{1}{2}m}\) có nghiệm x nguyên và F(x) là số nguyên dương.
b) Với mọi \(m\ge0\), tìm giá trị lớn nhất của F(x).
Với mọi m < 0, tìm giá trị nhỏ nhất của F(x).
a) Tìm nghiệm của đa thức 7x2- 35x + 42
b) Đa thức f(x)=ax2+bx+c có a,b,c là các số nguyên và a # 0 .Biết với mọi giá trị nguyên thì f(x) chia hết cho 7.chứng minh a,b,c,cũng chia hết cho 7
Bài1. Cho biểu thức và với
a) Rút gọn A;
b) Với P = A.B, tìm x để
c) Tìm x để B < 1
d) Tìm số nguyên x để P = A.B là số nguyên.
Bài 2. Cho biểu thức
a) Rút gọn P;
b) Tìm các giá trị của x để
c) Tìm các giá trị nguyên của x để A > 1
Bài 3. Cho biểu thức
a) Tìm điều kiện xác định của P;
b) Rút gọn biểu thức P.
c) Tìm các giá trị của x để
d) Tìm các giá trị của x để P > 0; P < 0.
Bài 1: Cho đa thức P(x) = ax2+bx+c với a;b;c là các số nguyên. Biết rằng giá trị của đa thức chia hết cho 3 với mọi giá tri nguyên của x . Chứng minh rằng a;b;c đều chia hết cho 3
Bài 2:Tìm các cặp số nguyên sao cho x2+xy+y2=x2+y2
cho (f)x = ax2 + bx + c nhận giá trị nguyên với mọi giá trị nguyên của x . CMR 2a ;a + b và c là các số nguyên
Ta có : f(0) = a.02 + b.0 + c = c\(\in\)Z
f(1) = a.12 + b.1 + c = a + b + c \(\in\)Z
Nên a + b \(\in\)Z
f(2) = a.22 + b.2 + c = 4a + 2b + c \(\in\)Z
mà 4a + 2b + c = 2a + 2a + 2b + c = 2a + 2(a+b) + c
Nên 2a \(\in\)Z
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢿⣟⡿⣟⣿⣻⣟⣿⣻⣟⢿⣽⣻⢽⢯⡟⡿⣽⢯⣟⠿⣽⣻⡽⢯⣟⣯⣟⢯⣟⡿⣽⣻⣽⢻⣯⡟⡿⣽⢯⣻⡝⣯⢽⣩⢏⢮⡱⢎⢲⡑⠆⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣻⣽⣫⢿⣹⣝⡺⡔⢢⠀⡀⠀⠀⠀⠀⠀
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢿⣽⡾⣟⣯⢿⣻⣞⣷⣻⣞⡷⢯⣻⠶⣏⢿⡺⣽⣹⡞⣽⣚⡟⣧⢷⣛⡿⡼⢶⣫⣟⡾⣽⣳⢯⣞⡿⣶⣻⣽⣳⢯⣷⣹⢧⡻⣜⣚⢦⡙⢮⡱⢬⡙⢼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣿⣿⣻⡜⣧⡙⢆⡡⢀⠀⠀⠀⠀⠀
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⣽⡿⣯⣟⣿⣽⣻⢷⣻⣞⡷⣯⣻⢏⣷⢿⣿⣾⣷⣿⢯⣽⣝⡛⠾⣧⣟⡼⢳⡝⣯⢳⡞⣽⠾⣵⣻⢾⣽⣳⡟⣾⡽⣳⢧⡟⣧⢻⡼⣩⠶⣙⢦⠳⡌⢞⣸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣯⣷⢻⡴⣩⠦⡑⠂⡌⠀⠀⠀⠀
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣳⣿⣟⣿⣽⣟⣾⣳⢿⣯⢷⣯⣟⣷⣯⢿⣭⡟⢯⣽⢃⢆⢺⣴⣊⠙⢦⡀⠈⠙⠧⣞⢌⡳⣹⢧⣛⠷⣯⣻⢶⣯⢟⣷⣻⡽⢯⡽⣝⣧⢻⣥⢻⡜⣎⢧⡙⣎⢆⣿⣿⣿⣾⣿⣟⣿⣿⣿⣿⣿⣿⢿⣻⣾⢯⣿⡱⣏⠼⣁⠒⡈⢄⠂⠀
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣻⣾⣟⣷⣟⡿⣾⣽⣷⣻⣟⣾⣻⣾⣿⢿⣸⣿⢫⢼⣷⡏⣷⡾⠟⠏⠃⠀⠀⠑⢆⠀⠀⠈⠳⣔⠱⢮⡝⣯⢳⣏⡿⣞⡿⣞⣷⣻⢯⣟⢷⣭⣳⢎⡷⣚⡼⢢⡝⡜⢮⢼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣽⣟⣮⠷⣭⢻⡔⣫⠔⣊⠔⡁
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢿⣽⣟⣷⣿⣻⣾⣟⣿⢾⣳⡿⣞⣷⣿⣿⣟⢣⣾⡏⢆⣿⢼⡇⠋⡁⠀⢸⠠⠰⡀⡀⠀⢢⠀⠀⢂⠈⠳⣜⠺⣵⡛⣞⡽⣯⢿⡽⣾⣽⣻⣞⡿⢶⣫⢟⡼⣣⡝⣧⡝⡞⣥⢻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣯⣿⣳⣛⡾⣵⢫⡖⣍⠲
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣻⣟⣿⡾⣟⣾⣟⡷⣿⢯⣿⣻⣽⣿⣿⣿⣿⢏⣾⣿⢘⡞⡽⢸⢣⠀⠇⠀⠀⡆⡇⣷⡈⠀⠀⢣⠀⠀⢠⠘⢿⣧⠳⣝⣎⡳⣏⡿⣽⣳⢯⡷⣯⣟⣯⢯⣟⢾⣱⣛⢶⡹⣝⢮⡳⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡽⣯⢷⣻⡜⣯
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣯⣷⡿⣯⣷⢿⣟⣿⢾⣿⣻⡿⣽⣿⣿⣿⣿⣿⡿⢎⣿⡟⢸⢡⣷⠈⣇⠣⣀⡃⠀⣧⢧⡛⠻⣦⡀⠄⢇⠀⠀⢆⠈⢿⣧⢻⣎⣷⢺⣽⣳⣟⣯⣟⣷⣻⣞⡿⣞⣯⣳⢏⡷⣝⢮⡳⣝⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡾⣽⣏⣯⣗⣿⣳
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣳⣯⣷⢿⣻⣽⡿⣯⢿⣻⣽⣷⣿⣿⣿⣿⣿⣿⣿⡿⡞⣿⡇⡘⣾⢱⠀⣿⣤⠞⠑⢲⣿⣿⣇⠀⠈⠳⣜⣿⡀⠀⠈⡆⠈⢾⡧⢿⡜⣟⣾⣳⣟⡾⣽⣞⡷⣯⢿⡽⣞⡷⣯⡟⣾⣭⢷⣛⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣿⣾⣽⣾⢿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⣾⢿⣽⡾⣟⣿⣳⣿⣻⡿⣯⣿⣾⣿⣿⣿⣿⣿⣿⣿⣳⡛⡿⡇⢹⠇⢈⣾⠻⣿⡄⢠⢾⣿⡾⡏⠈⠉⠉⠙⢿⡇⠀⢠⠸⠰⡀⢻⡞⣽⢯⣞⡷⣯⣟⣯⢿⣽⢯⣿⡽⣯⣟⣷⣻⠷⣞⣯⣳⢯⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣯⣿⣟⣿⣳⡿⣿⣽⢯⣷⡿⣽⣿⣳⣿⣿⣿⣿⣿⣿⣿⣿⣥⢃⣧⣧⡞⠊⠁⠻⣧⠿⣘⣏⣾⠿⠽⣷⣿⠿⢿⡻⣾⣷⡇⢸⡌⡇⢱⡄⣙⢧⣿⣾⣟⣷⣻⢾⣻⣽⢿⣾⣻⣷⣻⢾⣽⣻⡽⣶⢯⣟⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⡿⣷⣟⣷⣯⡷⣿⣽⣟⣾⢿⣯⢿⣟⣷⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡆⠸⣼⢁⣤⣶⡿⠟⠒⣿⠟⠁⠀⠀⠀⠀⠀⠀⠀⢰⣿⠆⢨⣿⢹⡀⣷⣌⢻⡝⣻⢼⣳⢯⡿⣽⡾⣟⣷⣿⣳⡿⣟⣾⢷⣻⣽⣻⢾⣽⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣻⣟⣾⣟⣾⣽⣟⣾⣯⢿⣻⣽⣿⣻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣻⡿⣧⠘⢿⠯⠤⠉⠀⠀⠀⠀⠀⣲⠀⠀⠀⠀⠀⠀⠀⠎⣿⡂⠐⣿⠀⣧⢸⡞⣆⢻⡜⣧⣻⢯⣟⡷⣿⣻⣽⣾⢿⣽⡿⣯⣿⢯⣷⢿⣯⣟⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⢷⣿⢯⣷⢿⣽⡾⣯⣷⢿⣻⣿⣽⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟⣽⣿⢯⣷⡀⠣⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⢠⣣⠀⢀⣿⢠⡏⣿⡗⣽⢸⣟⡶⣯⣟⣾⣽⣟⣯⣿⣯⣿⣟⣿⣿⣽⡿⣯⣿⢾⣻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣻⣿⢯⣿⢯⣿⣞⣿⣳⡿⣟⣿⣳⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢹⡟⠛⡆⠈⠻⣷⡭⡂⠀⠀⠀⠀⣤⣶⠶⠿⢿⡆⠀⢸⢀⣾⡇⠀⣸⠀⣸⣷⠸⣿⣾⣿⣯⣷⣿⢾⣽⣾⣟⣿⣷⣿⣻⣿⣿⣾⣟⣿⡿⣯⣿⡿⣽⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⢿⣽⡿⣯⣿⢷⣯⣿⡽⣟⣿⣯⣿⣷⣿⣿⣿⣿⣿⣿⣿⣿⣻⠇⣸⡁⠀⣹⡄⠠⡙⢷⡌⠑⠀⠀⠀⠛⠁⠒⠂⠉⠁⠀⠐⣡⡿⠀⢀⡇⢀⡏⣼⢸⣿⣿⣿⣯⣿⣿⣞⣿⣷⡿⣿⣾⣿⣿⣿⣾⣿⣿⡿⣿⣿⣟⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣻⣽⡿⣽⣯⣷⣟⣿⣟⣿⡾⣟⣾⣿⣿⣯⣿⣾⣿⣿⣿⣽⢠⡟⣇⢳⡘⣿⡄⠑⠌⢻⣦⣄⡀⠀⠀⠀⠀⠀⠀⠀⣠⣾⣿⣧⠀⣼⣿⢸⣧⢇⣿⣼⣻⣧⢻⡿⣿⣿⣿⡿⣽⣿⣷⣿⣿⣽⣿⣷⣿⣿⣿⣿⣿⣿⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣽⣿⢯⣿⣟⣷⡿⣾⣻⣾⢯⣿⣿⣿⣿⣿⣿⣽⣿⣿⣿⣿⡼⣏⣷⣹⣆⢻⣽⣿⢦⠀⠂⢹⣿⣿⣿⠒⡤⣄⣀⡤⠊⣡⢿⣿⡇⢀⣧⣿⣎⣿⣸⡿⣼⣿⣧⡟⣯⢻⣱⣿⣻⣟⣿⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣟⣯⣿⢿⣾⢯⣿⢿⣽⣻⣿⣻⣾⣿⣿⣿⣿⣿⣿⣿⣟⣿⣽⣻⢿⣿⣿⣿⣿⣿⢸⣧⠀⠈⣿⢿⣿⡇⠰⠀⠙⢒⡜⠁⢺⣿⡇⢸⣿⣿⣿⣽⣾⣯⡵⠮⠴⣭⡩⢟⡽⡾⣽⣻⣿⣽⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⡿⣟⣿⣯⣿⢯⣿⢿⣽⣿⣻⣿⣿⣿⣿⣿⣿⣿⣿⣾⣿⣿⣯⣿⣽⣿⣿⣿⣯⣿⣿⡇⠀⢸⣿⡿⢿⡀⢀⣠⠞⠀⠀⠈⠙⣧⢸⠛⠛⠻⠉⠁⠀⠀⠀⠀⠀⠉⢳⣽⣻⣽⢿⣻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣯⣷⡿⣿⣯⣿⢿⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠟⠋⠉⠉⠛⢛⠛⠛⢿⠀⣎⣿⠷⠚⠳⠉⠀⠀⠀⢀⡠⠤⢿⡘⡆⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢻⢷⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣯⣿⢿⣽⣷⡿⣯⣿⣟⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠃⠀⠀⠀⠀⠀⠀⠉⠒⢾⠀⣸⡟⢆⠀⠀⠑⠀⢀⠊⠠⠐⠀⢸⡳⣧⡀⠀⠀⠀⠀⢄⠀⡀⠀⠀⠀⠈⣿⣿⣷⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣻⣽⣿⢿⣯⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡏⠀⠀⠀⠀⡀⠀⠀⠀⠀⣾⠇⣿⠇⠈⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⡹⣝⠢⡀⠀⠀⠘⣆⠇⠀⠀⠀⠀⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣽⣿⣿⣽⣿⡿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠅⠀⠈⠀⢰⡇⠀⡔⠀⢠⠟⣰⠏⠀⣠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠓⠬⠵⣢⣄⡟⠀⠀⠀⠀⠀⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣾⣿⣷⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡆⠀⠀⠀⠈⢷⡸⠀⣰⣟⡼⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⠆⠀⠀⠀⠀⣹⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣇⠀⠀⠀⢀⢼⣷⠾⠛⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠐⠄⠀⠂⠒⠤⡐⢄⠀⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡄⠰⠚⠁⣾⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠐⢤⡆⠠⠈⠆⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⠀⢠⠞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢻⠀⠀⠀⠀⠀⠀⠀⠀⠀⠠⣀⣠⣤⡜⠀⢈⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣧⠏⠀⠀⠀⠆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠁⠀⠀⠰⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠿⠿⠿⠿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠀⡆⢤⡄⠂⢠⠀⠀⠀⠀⠀⠀⠀⠀⢀⠂⠀⠀⠀⠘⠢⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠟⠋⢁⣀⠀⠀⠀⠀⡀⢈⠻⣿⣿⣿⢿⡿⣿⢿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⠀⢳⣦⣤⣠⠜⠀⠀⠀⠀⠀⠀⢀⡔⠁⠀⠀⠀⠀⠀⠀⠀⠙⠒⢤⣤⣄⣀⣀⣀⣀⣤⡶⠇⠀⠀⢻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠿⠛⠉⠀⠀⠉⠀⢀⣈⡉⠰⠄⣈⣀⣠⡈⠻⣞⣯⢿⣽⣻
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡀⠀⠈⠉⠁⠀⠀⠀⠀⠀⢀⣴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠓⢤⣉⠉⣡⡾⣿⠀⠀⠀⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⠿⠿⠛⠛⠋⠉⠀⠀⠀⣀⣀⠀⠔⠉⠁⠀⠀⠀⠀⠀⠀⠀⠈⢳⡾⢯⡷⣳⢯
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⡄⠀⠀⠀⠀⠀⠀⣥⢶⡟⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠳⠋⠀⣼⠀⠀⠀⠼⠛⠛⠛⠉⠉⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⡄⠚⠝⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⡏⢾⠱⡏
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟⠶⢦⣤⣤⣶⠞⢤⡼⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⡇⢀⡔⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣺⡗⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢿⡘⢧⡸
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡌⠣⢞⣿⠤⢹⠞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣼⡇⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⣿⠟⠉⠀⠀⠀⠀⠀⢀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡍⢲⠱
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣯⡑⠌⠾⣧⢂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢿⣧⢷⡀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣶⣿⣿⠟⠁⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⡅⢂
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣉⠓⡌⠱⡹⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢷⢝⠒⢂⣀⣠⣤⣤⣶⣿⣿⣿⣿⠟⠁⠀⠀⠀⠀⠀⠀⠀⠀⢠⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠄⡡
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡏⡄⢃⠌⡑⢄⠻⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠙⠻⢿⣿⣿⣿⣿⣿⣿⡿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡗⢈⡐⠄
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⠇⡌⠌⣳⠈⡜⣿⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⡿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣏⠴⣤⢳
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⠣⠌⢂⢍⠒⢬⣿⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡝⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣯⠑⡌⠢⢌⡘⣼⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⣿⣷⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⣿⣿⣿⣿⣿⣿⣿⣿⠿⢿⣛⠿⣟⢻⡿⣿⣿⠰⣈⠑⢢⡐⣿⡇⠀⢠⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣟⣯⣟⡾⣽⣳⢯⣟⣿⣿⠿⠿⠷⠳⢦⣈⡛⠬⠆⡙⢌⢻⠰⢠⠉⢆⣸⣿⠁⢀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⣿⣿⡿⣿
⣿⣿⣿⣿⣿⣿⡿⣿⡽⡾⣝⠾⣜⡳⢭⡳⢫⠞⡽⣛⡿⣳⢶⣤⣀⠈⢁⠢⠑⡌⠢⢽⡎⠤⡉⢆⣾⡿⠀⡘⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣟⡳⢟⡽
⣿⣿⣿⣿⣟⣯⡟⣷⣹⢳⣭⢻⣬⢳⢫⢵⢫⡽⣱⢫⣜⡷⠿⠻⠿⠿⠦⢁⠃⡄⠣⡘⠷⢂⡱⣪⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⢏⡰⢉⡒⠄
⣿⣿⣟⣷⢻⡼⣽⢲⣏⠷⣎⠷⣜⣣⠟⣎⢷⡺⣵⣫⣟⡿⣶⣶⣤⣤⣤⣀⣦⣰⣵⣼⣷⣷⣶⣿⣿⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠄⢢⠁⢆⠡
⣿⡳⣞⡾⣹⢞⡵⣫⢞⡽⢎⡟⣬⡓⣿⡸⢧⣛⣶⣻⣼⢿⣽⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢾⢈⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⢈⠆⡑⠈⠄
⣷⢻⡵⣫⢗⡯⣞⡵⣫⢞⡽⢺⣱⢛⣶⣹⣧⣟⡶⠯⠿⠛⠛⠋⠉⠉⠉⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠉⠐⠚⠒⠤⢀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⢠⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠡⡈⠔⡈⠡⠀
⡽⣣⢟⡵⣫⢞⣬⡷⠽⠚⠛⠋⠉⠉⠁⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠐⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠇⠀⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡏⢀⠌⠐⡀⠡⠀
⡻⣵⢫⣞⠵⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⢤⣀⠀⠀⠀⠀⢰⣠⠀⠀⠀⠀⢸⠁⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠃⠀⢽⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡸⠀⢂⠈⠄⠠⠐⠀
⣟⠼⡳⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠳⡄⠀⠀⠀⢿⡆⢠⠀⠀⢸⠀⠀⣀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠡⢸⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠇⠀⡀⠈⠀⡀⠂⠀
⢮⡟⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⣄⠀⠀⠸⡿⢆⠀⠀⠘⣀⡟⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠰⢹⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⠀⠀⢀⠈⠀⠀⠀⠀
⣿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢷⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡙⣄⠀⠀⣿⣮⣆⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠰⢹⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⠁⠀⠀⠀⠀⠀⠀⠀⠀
⣿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠞⢧⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⠢⡀⢻⣿⣿⣄⣰⣿⡆⠀⠀⢠⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠉⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀
⣿⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠲⢤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⢿⣟⣿⣿⠍⠰⡀⠀⠸⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⡸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⡞⣷⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠳⢦⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠄⠀⠀⠀⠀⠀⠀⠀⠀⠀⢄⠀⠀⠀⠀⠀⠀⠀⠀⢠⠀⠀⠈⣽⠙⣿⡄⡀⡱⡄⢠⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠳⡍⣷⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⢯⡒⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠣⢄⠀⠀⢀⠄⠀⠀⠈⠀⠀⢀⠿⡇⢹⣧⡀⠌⠈⠙⢢⣡⠀⠀⠀⠀⠀⠀⠀⠀⣠⣴⣿⣿⣿⣿⡃⠀⠀⠀⠀⠀⠀⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⢱⢊⠴⡙⠷⣤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠈⠀⠀⠀⠀⠀⠦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠔⠀⠀⠀⠀⠀⠀⠀⡜⠀⠃⢸⣿⣷⣧⣆⣀⣀⡈⠓⣤⣀⣀⣤⣴⣶⣿⣿⣿⣿⣿⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⢸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠂⡍⠰⢈⠂⡙⢮⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠀⠀⠀⠀⠀⠀⠿⣦⠀⠀⠀⠀⠀⠂⠠⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⢂⠀⠀⠀⠀⠀⢀⡰⠯⠇⢀⣾⠻⠛⠛⠉⠉⠿⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡄⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⢂⠄⡁⢂⠐⠀⠀⠙⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⣿⣆⡀⠀⠀⠠⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠆⢀⣀⡤⠔⠋⢀⡠⠶⠋⠀⠀⠀⠀⠀⣀⠤⠴⠋⠌⠙⠩⢛⠿⣻⣿⣿⣿⣿⣿⣿⡏⠀⠀⠀⠀⠀⠀⠀⣸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⢀⠀⠂⠈⠀⠂⠀⠈⠳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣿⣿⣿⣶⣤⣤⣄⣀⣀⡀⠀⠀⠀⠀⢀⣀⣀⣠⣤⣴⣾⣭⣤⢤⣴⣶⠉⠒⠈⢉⡠⠞⠉⠉⠉⠀⠀⠀⠀⠀⠀⠁⠀⠂⠙⣻⣿⣿⣿⣿⣿⠇⠀⠀⠀⠀⠀⠀⢀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀
⠀⡀⠈⡀⠄⡁⠄⣁⠢⣔⡹⣆⠀⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠿⠟⠛⠛⠉⠈⠉⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⣿⣿⣿⣿⡿⠀⠀⠀⠀⠀⠀⠀⣸⠀⠀⠀⠀⠠⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⢀⠐⣀⠒⣤⢫⣞⣷⣯⣷⣿⣷⡌⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠿⢋⠉⠀⠀⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢽⣿⣿⣿⠁⠀⠀⠀⠀⠀⠀⠀⡧⠀⠀⠈⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀
⠀⠄⡒⢬⣻⣞⣿⣿⣿⣿⣿⣿⣿⣿⣷⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⢿⣿⣿⣿⣿⣿⣿⣿⣿⢿⡻⠍⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⣿⣿⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⢀⠂⠀⢀⠀⠄⠀⠀⠀⢀⠀⠀
⠀⢂⢹⣚⣷⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢿⣿⣿⣿⣿⣿⠿⣝⠣⠐⠀⠀⠀⠀⠀⠀⠀⠀⠠⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢐⣿⡿⠃⠞⠀⠀⠀⠀⠀⠀⠀⣾⠀⠀⠀⠀⠀⠈⠀⠀⠀⢀⠈⠀⠀⠀⠀
⠀⢊⢶⣹⡾⣟⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣦⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢻⣿⣿⣿⣏⠛⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣺⣿⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠃⠀⠀⠀⠀⠠⠀⡀⠀⠀⠀⠄⠂⠠
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠤⠤⠐⠒⣈⣉⢉⡉⠈⠉⠉⠐⠒⠠⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠠⠔⠈⠁⣀⢤⣶⠾⠛⠚⠫⠥⣒⠉⠉⠓⠲⠤⡀⠀⠈⠑⠠⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠊⠁⠀⢀⡴⠮⠔⠚⠒⠒⠂⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠒⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡐⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠤⠒⠉⠀⠀⠀⢀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢢⠀⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠒⠉⠀⠀⠀⠀⠀⠀⠀⠀⠈⠳⣤⡀⠀⠀⠀⠀⠀⠀⠀⠀⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠠⢀⠀⠀⢣⠀⠀⢹⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⠀⠀⠀⠀⠀⠀⠀⠈⣿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠶⡬⣧⠀⠀⠳⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢀⠀⢠⢳⠀⡀⠀⠀⠀⠀⠀⠀⠀⠙⣷⡀⠀⠀⠀⠀⠀⠀⠸⣷⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣇⠀⠀⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡆⢠⢼⢃⠧⡃⢸⠀⣆⠀⠀⠈⢆⠀⠀⠳⡄⠀⠀⠀⠀⠀⠀⢻⠀⠠⡀⠀⠀⢣⠀⠀⠀⠀⠀⢢⠀⠘⣆⠀⠀⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⡇⢸⣜⢹⣦⣵⢸⠀⣧⣧⢢⠀⠘⣆⠀⠰⢸⠀⠀⠀⠀⡀⠀⠸⢆⠀⢡⠀⠀⠀⠱⡀⠀⠀⠀⠀⠱⡀⢸⡇⠀⡄⢰⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠃⢰⠀⢡⠘⣾⣁⣂⣘⣮⡆⢹⠻⣧⢡⠀⢸⡆⠀⣷⡀⡀⠀⠀⢱⡄⠀⠀⠳⡈⡳⣄⠀⠀⠘⢆⠀⠀⠀⠀⢸⡌⡇⡸⠀⡜⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢡⢂⠘⡄⡈⡇⢹⣏⢧⣤⣼⣾⡌⡇⠚⠇⠇⠈⣶⠀⡿⠆⣧⠀⠀⠀⢻⡀⠀⢠⠙⣄⡙⢷⣄⡀⠘⣧⡀⠀⠀⠠⡿⢹⡇⡼⢁⣼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢿⢠⣷⣃⢹⡈⢿⢿⣿⣿⣿⢯⣳⠤⢼⠘⢠⡏⢀⡏⡇⡟⡄⠀⠀⢨⢿⠀⣸⠆⠘⡌⠑⠚⠿⣒⣽⣿⢢⡀⢰⢃⡟⡼⢡⢣⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⢸⠘⣿⠀⣇⠘⣰⡋⠃⠀⣤⣿⠃⢸⠀⢸⠁⡸⢸⡈⢻⣱⡀⣠⠓⣪⢾⠟⠀⠀⢸⡀⢤⡀⠀⠉⠺⢶⣟⠪⣼⠩⡐⡥⢏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠠⠀⠀⠀⡿⢸⢸⠀⣿⠀⠷⡇⠐⡀⠑⡁⡇⢸⠀⡜⢰⡇⢇⢳⡩⢷⢨⠁⢧⡿⠊⢀⡞⠀⣰⡇⠀⢻⣄⠀⠀⠀⠉⢷⢏⣰⠏⠀⠀⠳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⠗⠀⠀⠀⢜⣣⠃⢸⣀⡽⠐⠀⡇⠀⠈⢠⣟⠀⡌⢠⣣⠋⣧⢋⡜⣧⠎⢧⣙⣞⢠⢾⣋⠤⣺⠏⡜⡄⠀⢻⣦⠀⠀⠀⠀⢳⡇⠀⠀⢀⠀⢱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⢒⠝⠀⠀⠀⣬⠰⠏⠛⠛⣏⢼⠚⠉⢉⡒⠿⠦⠟⠒⠺⠲⠤⣟⡱⢊⡴⠙⣆⠀⢻⣇⠀⠀⠀⢸⡇⢠⡼⢈⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠜⠳⡁⠀⠀⠀⠀⠉⠘⢠⠔⡉⠀⡾⢠⡶⠃⠀⣀⡤⠐⠊⠉⢉⣩⡎⡽⢢⠹⣕⢌⢦⠀⢻⡆⠀⠀⣸⣏⣿⠃⡼⠀⣸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠊⠀⠀⠀⢀⠔⠁⣠⠎⡙⢢⡀⠀⠀⡰⢰⡇⠀⣷⢸⣸⢏⣤⣶⠟⠁⣀⡤⠖⡚⣩⢰⣸⣇⢣⡑⠎⢯⣆⠳⡌⣿⡀⢠⢻⢱⣣⡾⠁⣰⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⠔⠀⠀⠀⢰⠁⠀⣰⠡⢊⡜⣥⠞⠦⡂⠁⡸⡇⠀⣿⣼⣣⣴⣯⣵⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣶⣌⡍⠲⣌⠳⡘⠍⢧⢎⡟⡋⡵⡣⢎⡟⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢰⠀⡇⢇⣣⠞⡡⢊⣒⡟⢁⣾⣵⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠿⢿⣷⢳⣦⣩⠜⢢⠌⡖⡡⢏⡕⡞⠀⠀⠑⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠼⣨⡐⡏⣲⠇⣎⢥⣷⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣦⣰⠩⡆⠀⠉⠙⠲⢽⣣⠵⡋⠌⡇⢸⠀⠀⠈⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⡧⢇⣷⣏⣼⣾⣿⣿⣿⣿⣿⣿⠿⠛⣿⣿⣿⣿⣿⣿⣿⣿⡀⠙⠿⣿⣿⣿⣿⣿⣿⣿⣯⢑⢳⠈⠁⠒⢤⡀⠈⢳⡈⢢⠇⣾⠀⡜⠀⢸⣿⣶⣤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⢀⣔⡒⣹⣼⣿⣿⣿⣿⣿⣿⣿⠟⠉⠀⠀⠀⠈⢛⣿⣿⣿⣿⣿⣿⡇⠀⠀⠀⠉⠉⠉⠉⠁⠀⢸⡌⡘⠦⡀⠀⠀⠙⢷⣄⣳⠸⢸⠃⣼⠃⢠⣿⣿⣿⣿⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⢸⢸⠡⣾⣿⣿⣿⣿⣿⣿⣿⣧⣀⡀⠀⠀⠀⢠⣿⣿⣿⣿⣿⡿⣿⣿⡄⠠⠔⠀⣠⣤⣤⣶⣶⣿⣷⣥⣂⠉⠛⠷⣦⣀⡱⡹⢇⠋⣼⠃⣠⣿⣿⣿⣿⣿⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢱⠀⠀⣼⢺⢡⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣶⣴⣿⣿⣿⣿⣿⣿⢿⣿⣿⣿⡆⠀⠀⣿⣿⣿⣿⠿⠋⠙⢿⣷⢦⣀⠀⠀⠉⠉⠁⣘⠸⢁⡾⢿⣿⣿⣿⣿⣿⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣧⠀⣿⣌⢾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠟⠛⠿⣿⣿⣿⣿⣿⡟⣼⣿⣿⣿⡇⠀⢠⣟⠛⠋⢁⣀⣤⣴⣶⣿⠀⠉⠚⠙⠒⠦⢤⣈⣷⠋⡇⠈⢻⣿⣿⣿⣿⣿⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠽⡂⢡⠏⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠁⠀⠀⠀⠀⢈⣿⣿⡿⢠⣿⣿⣿⣿⠀⠀⣾⣿⣶⡾⠿⣿⡿⠛⣿⣿⠀⢫⡉⠁⠁⠀⠠⣀⠉⠳⡠⠀⢠⠈⢿⣿⣿⣿⣿⡅⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠊⠀⢳⡎⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣶⣶⣦⣤⣄⣾⣿⡿⠁⣼⣿⣿⣿⡏⠀⣼⡏⢹⣿⡇⢠⣿⡇⢀⣼⣿⡈⠳⣕⣄⠑⠢⢄⣀⠙⢦⠹⣆⠀⢧⠀⣿⣿⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠆⠀⢳⢄⠳⡄⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟⠋⠉⢹⣿⣿⣿⣿⠃⢸⣿⣿⣿⡿⠁⣴⣿⣷⣼⣿⠁⢼⣿⣶⣿⣟⣡⣽⣶⣄⡈⠉⠑⠲⠭⠃⠢⠡⠙⠦⠈⡄⠿⣿⣿⣿⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢨⠀⢀⠘⣎⠁⠈⣿⣿⣿⣿⣿⣿⣿⣿⣿⣏⠀⠀⢀⣼⣿⣿⡿⠁⢠⣿⣿⣿⡿⢁⣼⣿⣿⣿⡿⢃⣼⣆⠹⣿⣿⣿⣿⣿⣿⣿⣌⡟⠛⡒⠒⠶⠴⠶⠶⠒⠤⢼⠀⠈⢿⣿⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢦⠀⠣⡹⠄⣶⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣶⣍⠀⠀⠉⠀⢠⣿⣿⣿⢟⣴⣿⣿⣿⣿⣩⣴⣿⣿⣿⣷⣤⣙⣿⣿⣿⣿⣿⣿⡷⠈⡳⠤⣄⣀⣀⣀⣀⠀⠀⢣⢰⢸⣿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⣆⠙⣄⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣤⡀⣠⣿⣿⣿⣷⣿⣿⣿⣿⣿⣿⣿⡿⣿⢿⡿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣄⠙⢦⡀⠤⠤⠤⣀⣀⠀⠈⣞⢸⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠉⠷⣌⠘⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣟⣛⣉⣇⡀⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣆⠸⠛⠻⢿⣷⣶⣬⣉⣒⣀⡤⢬⣙⠳⣄⡞⠠⣁⠒⠤⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡘⢸⠰⡌⠉⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣾⣶⣶⣶⣶⣶⣶⣿⣿⣿⣿⣿⣿⣿⣿⣿⣶⣾⣿⣿⣿⣧⣤⣌⣉⠈⠩⣉⠉⠑⢢⠉⢢⡀⠰⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠐⠪⣢⠙⢦⣻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣤⣉⠲⣄⢳⡄⢻⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣩⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣾⣦⣷⣼⣃⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⣤⣴⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠿⠟⠛⠛⠛⣛⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣦⣄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣶⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠟⠛⢋⠉⠡⠀⠄⡐⠠⠌⡀⠃⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡛⠛⠻⠿⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠋⠄⢂⠁⡂⠌⠡⢈⠐⠠⣁⣂⣄⣡⣀⡄⠠⠉⢉⠉⡉⠉⡉⢉⠛⠛⠛⠻⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⢿⡇⢀⠂⠄⠠⢀⠉⡉⠙⠛⠿⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣦⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⣿⣿⣿⣿⣿⣿⣿⣿⠿⠛⠉⠄⢠⠁⢌⣀⡢⠴⠚⠒⠉⠉⠁⠀⠀⠀⠀⠴⠧⠤⠥⠤⠤⢄⣁⣐⡀⠐⠠⠈⠀⠄⠀⠄⢠⡄⠠⠀⠄⢀⠠⠀⠠⠀⠂⡬⠥⢄⣈⣄⠁⠂⠄⠡⢈⠐⠂⠄⠠⠉⢛⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⣿⣿⣿⣿⣿⣿⡿⠛⢉⠠⠐⡈⠐⡈⣰⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢆⠀⠀⢲⠀⠀⠀⡼⠀⢀⡤⠒⠒⠒⠚⠐⠓⠚⠁⠀⠀⠀⠈⠉⠑⠢⠥⣀⠌⠐⡈⠄⡁⠂⠼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⣿⣿⣿⣿⣿⠿⢋⠡⢀⠌⡀⢂⣡⡤⠕⠚⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⡀⠈⡆⠀⢠⠃⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠒⠤⣐⠠⠁⠂⠄⢉⠙⠿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣴⣿⣿⣿⡿⠟⢋⠠⠐⡀⠆⣀⠦⠒⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⠀⢣⠀⡞⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠲⢌⣀⣆⡈⠐⡠⠉⠛⠿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣼⣿⣿⣿⣿⡿⡄⡈⠄⢂⠡⡰⠚⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⢸⠀⡇⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠀⠈⠓⢤⡈⠐⠠⠀⠌⡙⠻⠿⣿⣿⣿⣿⣿⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⣰⣿⣿⣿⣿⣿⣿⡇⢁⠐⡈⡤⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣸⠀⣷⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠳⣄⠁⠂⠄⡁⠒⡈⠙⣻⣿⣿⣿⣿⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⢀⣾⣿⣿⣿⣿⣿⣿⣿⣤⠁⠂⠰⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢻⠀⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⣄⠡⠀⠅⠠⢡⠘⣿⣿⣿⣿⣿⣷⣄⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢀⣾⣿⣿⣿⣿⣿⣿⡿⠋⠀⡀⠀⣼⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡈⠀⠸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠣⡈⠄⡁⢂⢸⣿⣿⣿⣿⣿⣿⣿⣦⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⣾⣿⣿⣿⣿⣿⠿⠋⠀⠄⢁⡠⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠺⠊⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⢆⠐⠠⠘⠛⢿⣿⣿⣿⣿⣿⣿⣇⠀⠀⠀⠀⠀
⠀⠀⠀⣼⣿⣿⣿⣿⡿⠉⡀⠠⢀⡴⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠁⠀⠀⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⡁⠂⠄⢹⣿⣿⣿⣿⣿⣿⣆⠀⠀⠀⠀
⠀⠀⢰⣿⣿⣿⣿⡿⠁⠀⠀⡤⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡌⠀⢸⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠛⠉⠱⡌⢀⠈⢿⣿⣿⣿⣿⣿⡀⠀⠀⠀
⠀⠀⣿⣿⣿⣿⣿⠇⠁⢀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠁⠀⢸⡏⡀⢰⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⢆⠠⠈⠙⣿⣿⣿⣿⣧⠀⠀⠀
⠀⢸⣿⣿⣿⣿⡿⠘⠀⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠀⠐⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢠⠿⣇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠔⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢦⠈⠐⠘⢿⣿⣿⣿⡄⠀⠀
⠀⣿⣿⣿⣿⣿⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⢀⠈⠠⢚⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢆⠁⢂⠘⢻⣿⣿⣷⠀⠀
⠀⠻⣿⣿⣿⣿⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠐⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠇⢀⡀⠉⡀⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡆⠀⡐⢸⣿⣿⣿⡆⠀
⠀⠀⣾⣿⣿⣿⡁⠀⠀⢡⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠈⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠄⣿⣿⣿⣧⠀
⠀⢠⣿⣿⣿⣿⠄⠀⠀⠈⠆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠰⠁⠀⠀⣈⣿⣿⣿⣿⠀
⠀⣼⣿⣿⣿⣿⡂⠀⠀⠀⠘⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠀⠀⠀⠀⠀⠀⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠃⠀⠀⠀⢸⣿⣿⣿⣿⡇
⢀⣿⣿⣿⣿⣿⡇⠀⠀⠀⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠘⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠎⠀⠀⠀⠀⢸⣿⣿⣿⠁⠀
⢸⣿⣿⣿⣿⣿⡇⠀⠀⠀⠀⠀⠈⢂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⢺⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠊⠀⠀⠀⠀⠀⢸⣿⣿⣿⡀⠀
⢸⣿⣿⣿⣿⣿⣧⠀⠀⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⣰⡏⠀⠀⠀⠀⠀⢠⡀⠀⠀⠀⠀⢫⢆⠣⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡐⠁⠀⠀⠀⠀⠀⢀⣿⣿⣿⣿⠆⠀
⢸⣿⣿⣿⣿⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠠⠊⠀⣸⠹⠀⠀⠀⠀⠀⠀⡘⢣⠀⠀⠀⠀⠈⡞⡆⠈⠢⢀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⣸⣿⣿⣿⣿⠁⠀
⠀⠻⣿⣿⣿⣿⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠢⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠒⠁⠀⣀⡴⡗⠇⠀⠀⠀⠀⠀⢠⢙⡆⢧⠀⠀⠀⠀⢸⢻⡄⠀⠀⠑⠄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⢰⣿⣿⣿⣿⣿⠀⠀
⠀⠀⠙⢿⣿⣿⣿⣿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠂⠤⢀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡀⠤⠒⠁⠠⠒⠚⠉⠛⢯⢻⠘⠄⠀⠀⠀⠀⣞⡠⡇⢘⠀⠀⠀⠀⡘⣸⠟⣳⣄⣀⠀⠈⠢⢀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣿⣿⣿⣿⣿⡟⠀⠀
⠀⠀⠀⠀⠹⣿⣿⣿⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠐⠂⠤⢀⣀⠀⠀⠀⠀⠀⠀⣀⠠⠔⠂⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⣧⠈⠒⠤⠤⠞⣡⠵⣳⣌⡃⠀⣀⠔⢁⢯⠞⠁⠀⠉⠓⠢⠄⠀⠑⠢⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠠⠐⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣿⣿⣿⣿⣿⠏⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠙⣿⣿⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣧⣿⣧⣀⠀⠀⢰⡠⢏⣧⡴⠀⠁⠀⢀⣾⣾⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠂⠤⢀⣀⣀⡀⠀⠀⠀⠠⠄⠐⠂⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⢀⣿⣿⣿⣿⠟⠁⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠙⠻⢷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣼⣾⣿⣿⣿⣷⣶⣾⣷⣿⣾⣷⣶⣶⣾⣿⣿⣿⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⢢⣾⣿⡿⠟⠁⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢳⡤⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⣡⡿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⣶⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⣿⣿⣿⣿⣿⣿⣿⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠰⣢⡾⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢿⣿⣦⣄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢡⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣶⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟⢾⣿⣿⣿⣿⣿⢳⡹⢿⣿⣿⣿⣿⣿⣿⣿⣶⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣾⡟⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⣿⣿⣿⣶⣤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠣⠣⠀⠀⠀⠀⠀⠀⠀⠀⢀⣠⣶⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢿⣘⠧⣿⣿⡿⠿⣟⣣⢳⣏⠿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣠⣴⣾⣿⣿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣿⣿⣿⣷⣶⣤⣄⣀⣀⣀⡀⢀⠀⢀⣀⣀⣀⣠⣤⣶⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢟⡱⢎⣯⢳⣹⡄⠀⢠⡟⡴⣻⠜⣬⢙⡻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣦⣄⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣾⣿⣿⣿⣿⠟⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠹⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⣛⠱⣎⢱⣋⠾⣗⡼⡇⠀⣼⡱⢳⣏⠞⡤⢣⠜⣩⡻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣶⣶⣶⣶⣶⣶⣶⣾⣿⣿⣿⣿⣿⣿⣿⣿⡿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⢛⠭⣙⣦⢓⠬⢣⡜⠮⣽⡖⣧⠀⣧⢹⡿⢌⣎⠱⣃⠞⣼⠡⣍⠻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⢀⣶⠢⠤⢐⠦⡀⠀⠀⠀⠀⠀⠀⢀⠀⠀⠀⠀⠀⠀⠈⠻⣛⠿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠿⢿⢛⡋⠥⡘⣡⠚⡐⢎⢯⢎⠳⣘⠳⡬⢷⣹⢸⢇⣿⡱⢣⢌⠳⢌⣾⠁⠧⢠⠃⡔⢩⠿⠿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⡿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠰⣿⠁⣴⣷⣆⠹⣺⠀⠀⠻⣤⡾⠁⠘⢧⣴⠟⠀⠻⣤⡾⠃⠈⠳⣾⢫⣙⣯⣉⣿⣿⣟⢻⡟⣿⡍⣩⣥⡆⣰⣬⣌⣷⣈⣦⠱⡀⢏⠜⡌⢎⣻⡥⢋⡵⡙⠾⣟⣾⠭⡟⡔⢣⢎⡱⡾⢡⡉⠖⡡⢃⢬⡟⢠⠃⡌⠩⡙⣛⠿⠿⠿⢿⠿⣿⢿⠿⢿⢛⡛⢫⢍⡲⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠸⣿⣄⠻⠿⠋⡰⡽⠀⠀⣰⠟⢧⡀⢠⡾⠻⣄⠀⣴⠏⢦⡀⢠⡈⠻⣝⣿⡯⡹⣧⣼⣿⢸⣇⣿⡻⣿⣳⡏⢼⣇⢂⣿⣳⣿⢐⡉⢆⠚⣌⠲⣐⢻⡥⠲⣍⢳⢻⣏⢾⡏⡜⣡⠎⣴⢃⢣⠘⠤⡑⢌⡞⠰⡀⢃⠌⡑⣰⠏⡐⢣⠉⢆⡱⣰⠞⣉⢆⠣⣜⠵⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠈⠻⠷⠾⠯⠛⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⠙⠣⣜⡳⡅⢎⢡⠘⡰⢙⢧⡘⢌⠡⢂⠞⠿⠻⡤⠘⣄⠋⡤⠓⣌⠲⡹⣗⡸⢌⡫⣟⣼⢱⠸⡄⣿⠃⣌⠢⡉⢆⢱⡞⡈⠥⢐⠡⡘⣰⠏⡰⢁⠆⣩⢂⡶⢋⡜⣰⡬⠛⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Cho đa thức f(x) = ax^2 +bx + c có giá trị nguyên với mọi giá trị của x thì các hệ số a, b , c là các số nguyên
Cho các biểu thức:
A = x - 3 x x + 2 và B = x x - 3 - 3 x + 3 : x + 9 2 x + 6
với x ≥ 0 và x ≠ 9
a, Tính giá trị của A khi x = 25
b, Rút gọn B
c, Tìm các giá trị x nguyên để A.B có giá trị nguyên
a, Thay x = 25, ta tính được A = 10 7
b, Rút gọn được B =
2
x
-
3
c, Ta có A.B =
2
-
4
x
+
2
=>
2
+
2
∈
Ư
4
. Từ đó tìm được x = 0, x = 4
Cho các biểu thức: A = 6 x + 2 x và B = x x - 4 + 2 2 - x + 1 x + 2 với x > 0 và x ≠ 4
a, Tính giá trị của A khi x=1/4 và rút gọn B
b, Đặt M = A B . Hãy tìm các giá trị của x để M > 1
c, Tìm các giá trị của x nguyên để M nguyên
Tìm được A = 24 5 và B = - 6 x - 4 với x > 0 và x ≠ 4 ta tìm được 0 < x < 1
Ta có M = - 1 + 2 x ∈ Z => x ∈ Ư(2) từ đó tìm được x=1
Cho đa thức f(x)= a.x^2+b.x+c ; có 2 a, a+b và c là các số nguyên. Chứng minh f(x) nhận giá trị với mọi số nguyên x Giúp mình với mình cần gấp!
Lời giải:
Đặt $2a=m, a+b=n$ với $m,n$ là số nguyên. Khi đó:
$a=\frac{m}{2}; b=n-\frac{m}{2}$.
Khi đó:
$f(x)=\frac{m}{2}x^2+(n-\frac{m}{2})x+c$ với $m,n,c$ là số nguyên.
$f(x)=\frac{m}{2}(x^2-x)+nx+c=\frac{m}{2}x(x-1)+nx+c$
Với $x$ nguyên thì $x(x-1)$ là tích 2 số nguyên liên tiếp nên:
$x(x-1)\vdots 2$
$\Rightarrow \frac{m}{2}x(x-1)\in\mathbb{Z}$
Mà: $nx\in\mathbb{Z}, c\in\mathbb{Z}$ với $x,m,n,c\in\mathbb{Z}$
$\Rightarrow f(x)\in\mathbb{Z}$
Ta có đpcm.
cho đa thức f(x)=ax^2+bx+c,trong đó a,b,c là các số nguyên . Biết rằng giá trị của đa thức chia hết cho số nguyên tố p(p>2) với mọi giá trị nguyên của x . CMR : a,b,c đều chia hết cho p