tìm k thuộc N
a) 11k là số nguyên tố
b) k;k+6;k+8;k+12;k+14 là số nguyên tố
c) k+2 và k+4 là số nguyên tố (k thuộc số nguyên tố)
tìm k thuộc N
a) 11k là số nguyên tố
b) k;k+6;k+8;k+12;k+14 là số nguyên tố
c) k+2 và k+4 là số nguyên tố ( k là số nguyên tố)
Vì là số nguyên tố nên nên
Nếu k=2=> k+2=4 là hợp số
Nếu k=3 => k+2=5; k+4=7 đều là hợp số
Vậy k=3
a﴿ Điều kiện: k>0
Số nguyên tố là số có hai ước tự nhiên 1 và chính nó. Mà 11 là số nguyên tố
11k có các ước: 1,k và 11 ﴾vẫn còn nếu k là hợp số﴿
Buộc k phải bằng 1 để thõa mãn yêu cầu đề bài
b) ﴿ Vì k là số tự nhiên nên :
Nếu k = 0 thì 7 . k = 0, không phải số nguyên tố.
Nếu k = 1 thì 7 . k = 7, là số nguyên tố.
Nếu k ≥ 2 thì 7 . k ∈ B﴾7﴿, không phải số nguyên tố.
Vậy k = 1 thỏa mãn đề bài
câu c tương tự câu b
tìm k thuộc N sao cho
a) 11k là số nguyên tố
b) k;k+6;k+8;k+12;k+14 là số nguyên tố
c) k+ 2 và k+4 là số nguyên tố (k thộc số nguyên tố)
Tìm số nguyên tố k để 11k là số nguyên tố.
để 11k là số nguyên tố thì 11k chỉ có hai ước là 1 và chính nó.
Do đó với k là số nguyên tố thì 11k có các ước là 1,k,11,11k nên 11k là hợp số .
Suy ra kϵϕ
+) Với k = 1
11k => 11.1 = 11 (số nguyên tố)
+) Với k = 2
11k => 11.2 = 22 (Hợp số)
+) Với k = 3
11k => 11.3 = 33 (Hợp số)
---------------------------
Vậy, với k = 1 thì 11 là số nguyên tố.
tìm số tự nhiên k để
a,13k là số nguyên tố
b,k^2+k hông là số nguyên tố
c,11k-22 hông là hợp số
a, k = 1
b, k là số tự nhiên lớn hơn 1
c, k = 3 vì 22 chia hết cho 11 và 11 là số nguyên tố
Tìm các số tự nhiên k để mỗi số 7k và 11k là số nguyên tố .Với giá trị nào của k thì 7k và 11k đồng thời là hai số nguyên tố.
tìm các số tự nhiên k để mỗi số 7k,11k là số nguyên tố.Với giá trị nào của k thì 7k,11k ko đồng thời là số nguyên tố
Tìm các số tự nhiên k để mỗi số 7k và 11k là số nguyên tố .Với giá trị nào của k thì 7k và 11k đồng thời là hai số nguyên tố
tìm các số tự nhiên k để mỗi số 7k và 11k là số nguyên tố.Với giá trị nào của k thì 7k và 11k đồng thời là hai số nguyên tố
Tìm các số tự nhiên k sao cho 7k và 11k đều là số nguyên tố
Ta có 7 và 11 là số nguyên tố.
=> k = 1
Nếu \(k>1\) thì 7k chia hết cho 7; 7k chia hết cho k.
<=> 11k chia hết cho 11 và 11k chia hết cho k
Vậy k = 1
Ta có 7 và 11 là số nguyên tố.
=> k = 1
Nếu k > 1 thì 7k chia hết cho 7; 7k chia hết cho k.
<=> 11k chia hết cho 11 và 11k chia hết cho k
Vậy k = 1
Ta có 7 và 11 là số nguyên tố.
=> k = 1
Nếu k > 1 thì 7k chia hết cho 7; 7k chia hết cho k.
<=> 11k chia hết cho 11 và 11k chia hết cho k
Vậy k = 1