Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Đỗ Bảo Ngọc
Xem chi tiết
Nguyễn Huy Tú
9 tháng 8 2021 lúc 20:39

1, \(x^3+4x^2+4x=0\Leftrightarrow x\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow x\left(x+2\right)^2=0\Leftrightarrow x=-2;x=0\)

2, \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=1\)

3, \(x^4-9x^2=0\Leftrightarrow x^2\left(x^2-9\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=0;\pm3\)

4, \(x^2-6x+9=81\Leftrightarrow\left(x-3\right)^2=9^2\)

\(\Leftrightarrow\left(x-3-9\right)\left(x-3+9\right)=0\Leftrightarrow\left(x-12\right)\left(x+6\right)=0\Leftrightarrow x=-6;x=12\)

5, em xem lại đề nhé

Khách vãng lai đã xóa
Nguyễn Huy Tú
9 tháng 8 2021 lúc 20:41

à lag tý @@

5, \(x^3+6x^2+9x-4x=0\Leftrightarrow x^3+6x^2+5x=0\)

\(\Leftrightarrow x\left(x^2+6x+5\right)=0\Leftrightarrow x\left(x^2+x+5x+5\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=-1;x=0\)

Khách vãng lai đã xóa
๒ạςђ ภђเêภ♕
9 tháng 8 2021 lúc 20:44

a)\(x^3+4x^2+4x=0\)

\(\Leftrightarrow x\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow x\left(x+2\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)

b)\(\left(x+3\right)^2-4=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3-2=0\\x+3+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-5\end{cases}}}\)

c)\(x^4-9x^2=0\)

\(\Leftrightarrow x^2\left(x^2-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}}\)

d)\(x^2-6x+9=81\)

\(\Leftrightarrow\left(x-3\right)^2=81\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=9\\x-3=-9\end{cases}\Leftrightarrow\orbr{\begin{cases}x=12\\x=-6\end{cases}}}\)

e)\(x^3+6x^2+9x-4x=0\)

\(\Leftrightarrow x^3+6x^2+5x=0\)

\(\Leftrightarrow\left(x^2+5x\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+5x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0;x=-5\\x=-1\end{cases}}}\)

#H

Khách vãng lai đã xóa
Trần Linh Nga
Xem chi tiết
lê thị hương giang
1 tháng 6 2018 lúc 18:23

Những hằng đẳng thức đáng nhớ (Tiếp 1)Những hằng đẳng thức đáng nhớ (Tiếp 1)

lê thị hương giang
1 tháng 6 2018 lúc 18:24

bn kiểm tra giúp mk đề 2 câu cuối , mk làm ko ra

 Mashiro Shiina
1 tháng 6 2018 lúc 19:10

Khó quá,hay quá !!!

Trần Linh Nga
Xem chi tiết
Nhã Doanh
2 tháng 6 2018 lúc 21:46

1. \(x^6-2x^3+1=0\Leftrightarrow\left(x^3-1\right)^2=0\Leftrightarrow x=1\)

2. \(x^6+\dfrac{1}{4}x^3+\dfrac{1}{64}=0\Leftrightarrow\left(x^3\right)^2+2.x^3.\dfrac{1}{8}+\left(\dfrac{1}{8}\right)^2=0\Leftrightarrow\left(x+\dfrac{1}{8}\right)^2=0\Leftrightarrow x=-\dfrac{1}{2}\)4. \(x^3-10x^2+25x=0\Leftrightarrow x^3-5x^2-5x^2+25x=0\)

\(\Leftrightarrow x^2\left(x-5\right)-5x\left(x-5\right)=0\)

\(\Leftrightarrow x\left(x-5\right)^2=0\Leftrightarrow x=5\)

5. \(\dfrac{1}{4}x^3-3x^2+9x=0\)

\(\Leftrightarrow x\left(\dfrac{1}{4}x^2-3x+9\right)=0\)

\(\Leftrightarrow x\left[\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.3+3^2\right]=0\)

\(\Leftrightarrow x\left(\dfrac{1}{2}x-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

6. \(x^5-16x=0\Leftrightarrow x\left(x^4-16\right)=0\Leftrightarrow x\left(x^2-4\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\\x^2=-4\left(l\right)\end{matrix}\right.\)

7. \(4x^2+4x-3=0\Leftrightarrow4x^2-2x^2-6x-3=0\)

\(\Leftrightarrow2x\left(2x-1\right)-3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

8. \(4x^2+28x+48=0\Leftrightarrow4x^2+12x+14x+48=0\)

\(\Leftrightarrow4x\left(x+3\right)+12\left(x+4\right)=0\)

\(\Leftrightarrow\left(4x+12\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-4\end{matrix}\right.\)

9. \(9x^2-12x+3=0\Leftrightarrow9x^2-9x-3x+3=0\Leftrightarrow9x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(9x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

Eren
2 tháng 6 2018 lúc 22:03

|2 - x|2 + 6x - 3 = 0

<=> (x - 2)2 + 6x - 3 = 0

<=> x2 - 4x + 4 + 6x - 3 = 0

<=> x2 + 2x + 1 = 0

<=> (x + 1)2 = 0

<=> x + 1 = 0

<=> x = -1

Bắt phải thể hiện -_-

Phạm Đỗ Bảo Ngọc
Xem chi tiết
Nguyễn Huy Tú
9 tháng 8 2021 lúc 20:52

3, \(\left(x-2\right)^2-5\left(2-x\right)=0\Leftrightarrow\left(2-x\right)^2-5\left(2-x\right)=0\)

\(\Leftrightarrow\left(2-x-5\right)\left(2-x\right)=0\Leftrightarrow\left(x+3\right)\left(2-x\right)=0\Leftrightarrow x=-3;x=2\)

4, \(x^3-8+2x^2-4x=0\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)+2x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)^2=0\Leftrightarrow x=\pm2\)

5, \(x^2\left(x-3\right)+18-6x=0\Leftrightarrow x^2\left(x-3\right)-6\left(x-3\right)=0\)

\(\Leftrightarrow\left(x^2-6\right)\left(x-3\right)=0\Leftrightarrow x=\pm\sqrt{6};x=3\)

Khách vãng lai đã xóa
Lê Hoàng Minh +™( ✎﹏TΣΔ...
9 tháng 8 2021 lúc 20:53

tìm x

3, ( x - 2 ) mũ 2 - 5( 2 - x ) = 0

x=-3, x=2

4, ( x mũ 3 - 8 ) + 2x mũ 2 - 4x = 0

x= 2 , x= -2 

5, x mũ 2 ( x - 3 ) + 18 - 6x = 0

x=-căn bậc hai(6), x=căn bậc hai(6), x=3

Khách vãng lai đã xóa
Trần Bảo 	Vy
9 tháng 8 2021 lúc 21:03

sao mọi người  tl mà ko k vậy 

Khách vãng lai đã xóa
Nguyễn Anh Thư
Xem chi tiết
ミ★Ƙαї★彡
18 tháng 10 2020 lúc 13:41

Bài 2 : 

a, \(x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow x=0;4\)

b, \(5x\left(x-2020\right)-x+2020=0\)

\(\Leftrightarrow5x\left(x-2020\right)-\left(x-2020\right)=0\Leftrightarrow\left(5x-1\right)\left(x-2020\right)=0\)

\(\Leftrightarrow x=\frac{1}{5};2020\)

c, \(\left(4x+5\right)^2-\left(2x-1\right)^2=0\)

\(\Leftrightarrow16x^2+40x+25-\left(4x^2-4x+1\right)=0\)

\(\Leftrightarrow12x^2+44x+24=0\Leftrightarrow4\left(x+3\right)\left(3x+2\right)=0\)

\(\Leftrightarrow x=-3;-\frac{2}{3}\)

Khách vãng lai đã xóa
Kiên Đỗ
18 tháng 10 2020 lúc 13:45

a,x2-4x=0

= x.(x-4)=0

=> x=0 hoặc x-4=0

=>x=0 hoặc x=4

Khách vãng lai đã xóa
Khánh Ngọc
18 tháng 10 2020 lúc 14:18

a. x2 - 4x = 0

<=> x ( x - 4 ) = 0

<=>\(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

b. 5x ( x - 2020 ) - x + 2020 = 0

<=> 5x ( x - 2020 ) - ( x - 2020 ) = 0

<=> ( 5x - 1 ) ( x - 2020 ) = 0

<=>\(\orbr{\begin{cases}5x-1=0\\x-2020=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=\frac{1}{5}\\x=2020\end{cases}}\)

c. ( 4x + 5 )2 - ( 2x - 1 )2 = 0

<=> 16x2 + 40x + 25 - 4x2 + 4x - 1 = 0

<=> 12x2 + 44x + 24 = 0

<=> 4 ( 3x2 + 11x + 6 ) = 0

<=> ( 3x2 + 9x ) + ( 2x + 6 ) = 0

<=> 3x ( x + 3 ) + 2 ( x + 3 ) = 0

<=> ( 3x + 2 ) ( x + 3 ) = 0

<=>\(\orbr{\begin{cases}3x+2=0\\x+3=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-\frac{2}{3}\\x=-3\end{cases}}\)

d. x2 + 6x - 8 = 0

<=> x2 + 6x + 9 = 17

<=> ( x + 3 )2 = 17 

<=>\(\orbr{\begin{cases}x+3=\sqrt{17}\\x+3=-\sqrt{17}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-3+\sqrt{17}\\x=-3-\sqrt{17}\end{cases}}\)

e. 4x2 + 2x - 6 = 0

<=> 2 ( 2x2 + x - 3 ) = 0

<=> ( 2x2 + 3x ) - ( 2x + 3 ) = 0

<=> x ( 2x + 3 ) - ( 2x + 3 ) = 0

<=> ( x - 1 ) ( 2x + 3 ) = 0

<=>\(\orbr{\begin{cases}x-1=0\\2x+3=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=1\\x=-\frac{3}{2}\end{cases}}\)

Khách vãng lai đã xóa
Phạm Đỗ Bảo Ngọc
Xem chi tiết
Lê Minh Phương
6 tháng 8 2021 lúc 19:58

đm con chó

Khách vãng lai đã xóa
Nguyễn Huy Tú
6 tháng 8 2021 lúc 20:00

e, \(\left(x^3-4x^2\right)-\left(x-4\right)=0\)

\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\Leftrightarrow\left(x^2-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(x-4\right)=0\Leftrightarrow x=\pm1;x=4\)

f, \(2x^3-242x=0\Leftrightarrow2x\left(x^2-121\right)=0\)

\(\Leftrightarrow2x\left(x-11\right)\left(x+11\right)=0\Leftrightarrow x=\pm11;x=0\)

g, \(x^5-9x=0\Leftrightarrow x\left(x^4-9\right)=0\)

\(\Leftrightarrow x\left(x^2-3\right)\left(x^2+3>0\right)=0\Leftrightarrow x=\pm\sqrt{3};x=0\)

Khách vãng lai đã xóa
Quỳnh Anh
6 tháng 8 2021 lúc 20:26

Trả lời:

e, \(\left(x^3-4x^2\right)-\left(x-4\right)=0\)

\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=\pm1\end{cases}}}\)

Vậy x = 4; x = 1; x = - 1 là nghiệm của pt.

f, \(2x^3-242x=0\)

\(\Leftrightarrow2x\left(x^2-121\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x^2-121=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm11\end{cases}}}\)

Vậy x = 0; x = 11; x = - 11 là nghiệm của pt.

g, \(x^5-9x=0\)

\(\Leftrightarrow x\left(x^4-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^4-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{3}\end{cases}}}\)

Vậy x = 0; x = \(\sqrt{3}\); x = \(-\sqrt{3}\) là nghiệm của pt.

Khách vãng lai đã xóa
phạm tường vy channel
Xem chi tiết
Nguyễn Anh Thư
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
21 tháng 9 2020 lúc 20:32

a) ( x - 3 )2 - 4 = 0

<=> ( x - 3 )2 - 22 = 0

<=> ( x - 3 - 2 )( x - 3 + 2 ) = 0

<=> ( x - 5 )( x - 1 ) = 0

<=> x = 5 hoặc x = 1

b( 2x + 3 )2 - ( 2x + 1 )( 2x - 1 ) = 22

<=> 4x2 + 12x + 9 - ( 4x2 - 1 ) = 22

<=> 4x2 + 12x + 9 - 4x2 + 1 = 22

<=> 12x + 10 = 22

<=> 12x = 12

<=> x = 1

c) ( 4x + 3 )( 4x - 3 ) - ( 4x - 5 )2 = 16

<=> 16x2 - 9 - ( 16x2 - 40x + 25 ) = 16

<=> 16x2 - 9 - 16x2 + 40x - 25 = 16

<=> 40x - 34 = 16

<=> 40x = 50

<=> x = 50/40 = 5/4

d) x3 - 9x2 + 27x - 27 = -8

<=> ( x - 3 )3 = -8

<=> ( x - 3 )3 = (-2)3

<=> x - 3 = -2

<=> x = 1 

e) ( x + 1 )3 - x2( x + 3 ) = 2

<=> x3 + 3x2 + 3x + 1 - x3 - 3x2 = 2

<=> 3x + 1 = 2

<=> 3x = 1

<=> x = 1/3

f) ( x - 2 )3 - x( x - 1 )( x + 1 ) + 6x2 = 5

<=> x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 6x2 = 5

<=> x3 + 12x - 8 - x3 + x = 5

<=> 13x - 8 = 5

<=> 13x = 13

<=> x = 1

Khách vãng lai đã xóa
Huỳnh Quang Sang
21 tháng 9 2020 lúc 20:34

a) \(\left(x-3\right)^2-4=0\)

=> \(\left(x-3\right)^2-2^2=0\)

=> \(\left(x-3-2\right)\left(x-3+2\right)=0\)

=> \(\left(x-5\right)\left(x-1\right)=0\)

=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)

=> \(\left(2x+3\right)^2-\left[\left(2x\right)^2-1^2\right]=22\)

=> \(\left(2x+3\right)^2-\left(4x^2-1\right)=22\)

=> \(\left(2x\right)^2+2\cdot2x\cdot3+3^2-4x^2+1=22\)

=> \(4x^2+12x+9-4x^2+1=22\)

=> \(12x+9+1=22\)

=> \(12x+10=22\)

=> 12x = 12

=> x = 1

c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)

=> \(\left(4x\right)^2-3^2-\left[\left(4x\right)^2-2\cdot4x\cdot5+5^2\right]=16\)

=> \(16x^2-9-\left(16x^2-40x+25\right)=16\)

=> \(16x^2-9-16x^2+40x-25=16\)

=> \(-9+40x-25=16\)

=> \(40x=16+25-\left(-9\right)=16+25+9=50\)

=> x = 50/40 = 5/4

d) \(x^3-9x^2+27x-27=-8\)

=> \(x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3=8\)

=> \(\left(x-3\right)^3=-8\)

=> \(\left(x-3\right)^3=\left(-2\right)^3\)

=> x - 3  = -2 => x = 1

e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)

=> \(x^3+3x^2+3x+1-x^3-3x^2=2\)

=> \(3x+1=2\)

=> \(3x=1\)=> x = 1/3

f) \(\left(x-2\right)^3-x\left(x-1\right)\left(x+1\right)+6x^2=5\)

=> \(x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3-x\left(x^2-1\right)+6x^2=5\)

=> \(x^3-6x^2+12x-8-x^3+x+6x^2=5\)

=> \(\left(12x+x\right)-8=5\)

=> 13x  = 13

=> x = 1

Khách vãng lai đã xóa
Thành Đạt Nguyễn
25 tháng 9 2020 lúc 20:12

a) (x+3)^2-4=0

=>(x+3)^2 = 4

=>(x+3)^2 = 2^2 = (-2)^2

=>x+3 = 2 hoặc -2

=> x= -1 hoặc -5

Khách vãng lai đã xóa
Trần Linh Nga
Xem chi tiết
Nguyễn Trúc Mai
1 tháng 6 2018 lúc 19:12

Tìm x:

1. \(25x^2-20x+4=0\)

\(\left(5x-2\right)^2=0\)

\(5x-2=0\)

\(5x=2\)

\(x=\dfrac{2}{5}\)

⇒ S = \(\left\{\dfrac{2}{5}\right\}\)

2. \(\left(2x-3\right)^2-\left(2x+1\right).\left(2x-1\right)=0\)

\(4x^2-12x+9-\left(4x^2-1\right)=0\)

\(4x^2-12x+9-4x^2+1=0\)

\(-12x+10=0\)

\(-12x=-10\)

\(x=\dfrac{5}{6}\)

⇒ S \(=\left\{\dfrac{5}{6}\right\}\)

3. \(\left(\dfrac{1}{2}x-1\right)\left(\dfrac{1}{2}x+1\right)-\left(\dfrac{1}{2}x-1\right)^2=0\)

\(\dfrac{1}{4}x^2-1-\left(\dfrac{1}{4}x^2-x+1\right)=0\)

\(\dfrac{1}{4}x^2-1-\dfrac{1}{4}x^2+x-1=0\)

\(-2+x=0\)

\(x=2\)

⇒ S \(=\left\{2\right\}\)

4. \(\left(2x-3\right)^2+\left(2x+5\right)^2=8\left(x+1\right)^2\)

\(4x^2-12x+9+4x^2+20x+25=8\left(x^2+2x+1\right)\)

\(8x^2+8x+34=8x^2+16x+8\)

\(8x+34=16x+8\)

\(8x-16x=8-34\)

\(-8x=-26\)

\(x=\dfrac{13}{4}\)

⇒ S \(=\left\{\dfrac{13}{4}\right\}\)

5.\(4x^2+12x-7=0\)

\(4x^2+14x-2x-7=0\)

\(2x\left(2x+7\right)-\left(2x+7\right)=0\)

\(\left(2x+7\right)\left(2x-1\right)=0\)

\(\left[{}\begin{matrix}2x+7=0\\2x-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{-7}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

⇒ S \(=\left\{\dfrac{-7}{2};\dfrac{1}{2}\right\}\)

6. \(\dfrac{1}{4}x^2+\dfrac{2}{3}x-\dfrac{5}{9}=0\)

\(9x^2+24x-20=0\)

\(9x^2+30x-6x-20=0\)

\(3x\left(3x+10\right)-2\left(3x+10\right)=0\)

\(\left(3x+10\right)\left(3x-2\right)=0\)

\(\left[{}\begin{matrix}3x+10=0\\3x-2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{-10}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)

⇒ S \(=\left\{\dfrac{-10}{3};\dfrac{2}{3}\right\}\)

Nguyễn Trúc Mai
1 tháng 6 2018 lúc 19:23

7. \(24\dfrac{8}{9}-\dfrac{1}{4}x^2-\dfrac{1}{3}x=0\)

\(\dfrac{224}{9}-\dfrac{1}{4}x^2-\dfrac{1}{3}x=0\)

\(896-9x^2-12x=0\)

\(-896+9x^2+12x=0\)

\(9x^2+12x-896=0\)

\(9x^2-84x+96x-896=0\)

\(3x\left(3x-28\right)+32\left(3x-28\right)=0\)

\(\left(3x-28\right)\left(3x+32\right)=0\)

\(\left[{}\begin{matrix}3x-28=0\\3x+32=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{28}{3}\\x=\dfrac{-32}{3}\end{matrix}\right.\)

⇒ S \(=\left\{\dfrac{-32}{3};\dfrac{28}{3}\right\}\)