Giải pt nghiệm nguyên dương 3x +8=y2+2y
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
Giải pt nghiệm nguyên:
1) 3(x2-xy+y2)=7(x+y)
2) 5(x2+xy+y2)=7(x+2y)
Giải pt nghiệm nguyên :
a, x2 -2xy + y2 -3x +2y +1=0
b, x2 + xy +y2 = 2x + y
Giải pt nghiệm nguyên: \(3x^2=y^2+2y+7\)
\(\Leftrightarrow3\left(x^2-2\right)=\left(y+1\right)^2\)
\(3\left(x^2-2\right)⋮3\Rightarrow y+1⋮3\Rightarrow\left(y+1\right)^2⋮9\)
\(\Rightarrow x^2-2⋮3\) (vô lý do \(x^2\) chia 3 luôn dư 0 hoặc 1)
Vậy pt đã cho vô nghiệm
Tìm nghiệm nguyên dương x,y của pt sau
3x2+y2+2x-2y=1
3x2 + y2 + 2x - 2y = 1
\(\Leftrightarrow\)3x2 + y2 + 2x - 2y - 1 = 0
\(\Leftrightarrow\)2x( x+ 1 ) + ( x + 1 ) ( x - 1 ) - y( y - 1 ) = 0
\(\Leftrightarrow\)( x + 1 ) ( 3x + 1 ) - y( y - 1 ) = 0
\(\orbr{\begin{cases}\left(x+1\right)\left(3x+1\right)=0\\y\left(y-1\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=-1\\x=-\frac{1}{3}\end{cases}}\\\hept{\begin{cases}y=0\\y=1\end{cases}}\end{cases}}\)
giải pt nghiệm nguyên \(2x^2+3xy+3x+2y=-y^2-2\)
tìm nghiệm nguyên dương nhỏ nhất của hệ pt
a, x=5y+3 và x=11x+7
b, x+2y+3z=20 và 3x+5y+4z=37
số nghiệm nguyên duogw của pt 3x + 2y = 321
Ta có: 3x+2y=321 <=>y= -3x+321 <=> y= -3/2x +321/2
<=> y = 160-x+1/2-1/2x <=> y = 160-x +(1-x)/2
Vì x,y nguyên dương nên ta có 1-x chia hết cho 2.
Đặt 1-x là 2k (k thuộc Z) => x=1-2k và y= 160-(1-2k)+2k/2 <=> y=160+2k-1+k <=> y=159+3k
Vì y>0 => 159+3k >0 => 3k > -159 => k>-53 (1)
Vì x>0 => 1-2k >0 => 2k < 1 => k < 1/2 (2)
Từ (1) và (2) => -53 < k < 1/2, mà k thuộc Z => k= -52,-51,....-1,0 => có 53 giá trị của k thỏa mãn => pt có 53 nghiệm nguyên dương (x;y)=(1-2k;159+3k) với k thuộc Z
Đây là lần đầu mình dùng trang này nên chưa biết gõ mấy cái kí hiệu toán học, có gì bạn bỏ qua cho nhé :)
tìm nghiệm nguyên của pt \(6x^2y^3+3x^2-10y^3=-2\)
Lời giải:
Ta có:
$6x^2y^3+3x^2-10y^3=-2$
$\Leftrightarrow 2y^3(3x^2-5)+(3x^2-5)=-7$
$\Leftrightarrow (2y^3+1)(3x^2-5)=-7$
Vì $x,y$ nguyên nên $2y^3+1; 3x^2-5$ cũng đều nhận giá trị nguyên.
Đến đây ta xét các TH:
TH1: $2y^3+1=-1; 3x^2-5=7$
TH2: $2y^3+1=1; 3x^2-5=-7$
TH3: $2y^3+1=-7; 3x^2-5=1$
TH4: $2y^3+1=7; 3x^2-5=-1$
Giải lần lượt các TH ta được $x=\pm 2; y=-1$