Tìm tất cả các số nguyên tố có dạng a27
GIÚP VỚI Ạ.
Tìm tất cả các số nguyên tố p có dạng a^3 + b^3 + 1 − 3ab với a; b nguyên dương.
Tìm tất cả các số nguyên tố có dạng a27
để a27 là số nguyên tố
thì a27 ko chia hết cho bất cứ số nào trừ chính nó và 1
các số đó là:
127;227;727;827
=> a thuộc {1;2;7;8}
Trả lời :
Nếu a = 1 = > a27 = 127 là số nguyên tố ( chọn )
Nếu a = 2 => a27 = 227 là số nguyên tố ( chọn )
Nếu a = 3 => a27 = 327 là hợp số ( loại )
Nếu a = 4 => a27 = 427 là hợp số ( loại )
Nếu a = 5 => a27 = 527 là hợp số ( loại )
Nếu a = 7 => a27 = 727 là sô nguyên tố ( chọn )
Nếu a = 8 => a27 = 827 là số nguyên tố ( chọn )
Nếu a = 9 => a27 = 927 là hợp số ( loại )
Vậy nếu a = { 1 ; 2 ; 7 ; 8 }
Trang 128 , sgk lớp 6 tập 1 ( BẢNG SỐ NGUYÊN TỐ ( nhỏ hơn 1000 )
Tìm tất cả các số nguyên tố p sao cho 16p + 1 là lập phương đúng.(Lập phương đúng là số có dạng a^3 với a nguyên)
a ) tìm tất cả các số nguyên tố p sao cho p+2 và p+4 cùng là số nguyên tố
b) tìm 3 số nguyên tố có dạng p , p+10 , p+20
Tìm tất cả các số nguyên tố có dạng a27.
Bạn tham khảo tại đây nhé;
https://olm.vn/hoi-dap/detail/226141560664.html
Link nek:
Câu hỏi của Anh Trần - Toán lớp 6 - Học toán với OnlineMath
Tham khảo nha ~ Học tốt ~
Tìm tất cả các số nguyên tố p có dạng p=a^2+b^2+c^2 với a, b, c là các số nguyên dương sao cho a^4+b^4+c^4 chia hết cho p
tìm tất cả số tự nhiên n để 5^n + 10 là số nguyên tố.
Các hảo hán cíu iem với ạ :<
TH1. Đề bài là: 5n + 10 \(\in\) P
Với n = 0 ⇒ 5n + 10 = 1 + 10 = 11 (thỏa mãn)
Với n ≥ 1 ⇒ 5n + 10 = \(\overline{..5}\)+ 10 = \(\overline{..5}\) ⋮ 5 (loại)
Vậy n = 0
TH2. Đề bài là: 5n +10 \(\in\) P
5n+10 \(\in\) P ⇔ n + 10 = 1
⇒ n = -9 (loại)
n \(\in\) \(\varnothing\)
tìm tất cả các số nguyên tố có dạng p= a^2+b^2+c^2 với a,b,c nguyên dương thỏa mãn a^4+b^4+c^4 chia hết cho p
Tìm tất cả các số nguyên tố p có dạng \(\dfrac{n\left(n+1\right)}{2}-1\left(n\ge1\right)\)
TH1: \(n\) chẵn \(\Rightarrow n=2k\) (với \(k\in N\)*)
\(p=\dfrac{2k\left(2k+1\right)}{2}-1=2k^2+k-1=\left(k+1\right)\left(2k-1\right)\)
Do \(k+1\ge2>1\) nên p nguyên tố khi và chỉ khi: \(\left\{{}\begin{matrix}2k-1=1\\k+1\text{ là số nguyên tố}\end{matrix}\right.\)
\(2k-1=1\Rightarrow k=1\)
Khi đó \(p=2\) (thỏa mãn)
TH2: \(n\) lẻ \(\Rightarrow n=2k+1\) (với \(k\in N\))
\(p=\dfrac{\left(2k+1\right)\left(2k+2\right)}{2}-1=\left(2k+1\right)\left(k+1\right)-1=2k^2+3k=k\left(2k+3\right)\)
Do \(2k+3\ge3>1\) nên p là nguyên tố khi và chỉ khi \(\left\{{}\begin{matrix}k=1\\2k+3\text{ là số nguyên tố}\end{matrix}\right.\)
Khi \(k=1\Rightarrow p=5\) là số nguyên tố (thỏa mãn)
Vậy \(p=\left\{2;5\right\}\)