Phân tích đa thự thành nhân tử
\(4x^2+81\)
Phân tích các đa thức sau thành nhân tử:
a) \(4x^2+81\)
b) \(x^7+x^2+1\)
a) Ta thấy đa thức \(f\left(x\right)=4x^2+81\) vô nghiệm (*).
Giả sử \(f\left(x\right)\) có thể phân tích được thành nhân tử, khi đó \(f\left(x\right)=\left(ax+b\right)\left(cx+d\right)\), suy ra \(f\) có nghiệm là \(x=-\dfrac{b}{a}\) hoặc \(x=-\dfrac{d}{c}\), mâu thuẫn với (*).
Vậy ta không thể phân tích \(f\left(x\right)\) thành nhân tử.
b) \(g\left(x\right)=x^7+x^2+1\)
\(g\left(x\right)=x^7-x+x^2+x+1\)
\(g\left(x\right)=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
Xét \(h\left(x\right)=x^5-x^4+x^2-x+1\), nếu \(h\left(x\right)\) phân tích được thành nhân tử thì nó có nghiệm hữu tỉ. Khi đó nó có dạng \(x=\dfrac{p}{q},\left(p,q\inℤ;\left(p,q\right)=1\right),p|1,q|1\) \(\Rightarrow x=\pm1\). Ta thấy \(h\left(1\right).h\left(-1\right)\ne0\) nên 2 nghiệm này không thỏa mãn. Vậy h(x) không có nghiệm hữu tỉ \(\Rightarrow\) g(x) không thể phân tích tiếp.
a)
\(4x^2+81\\=(2x)^2+2\cdot2x\cdot9+9^2-36x\\=(2x+9)^2-36x\)
Bạn xem lại đề bài nhé!
b)
\(x^7+x^2+1\\=(x^7+x^6+x^5)-x^6-x^5-x^4+(x^4+x^3+x^2)-(x^3-1)\\=x^5(x^2+x+1)-x^4(x^2+x+1)+x^2(x^2+x+1)-(x-1)(x^2+x+1)\\=(x^2+x+1)(x^4-x^4+x^2-x+1)\)
phân tích đa thức thành nhân tử 4x^4 + 81
4x^4+81
= (2x^2)^2+9^2 +36x^2-36x^2
= (2x^2+9)^2 -36x^2
=( 2x^2+9-6x)(2x^2+9+6x)
phân tích đa thức thành nhân tử:
4x^4+81
Phân tích đa thự thành nhân tử
\(x^3-6x^2-x+30\)
x3 - 6x2 - x + 30
= (x + 2).x2 - 6x2 - x + 30/x + 2
= x2 - 8x + 15
= (x + 2)(x - 3)(x - 5)
\(x^3-6x^2-x+30\)
\(=\left(x^3-8x^2+15x\right)+\left(2x^2-16x+30\right)\)
\(=x\left(x^2-8x+15\right)+2\left(x^2-9x+15\right)\)
\(=\left(x^2-8x+15\right)\left(x+2\right)\)
\(=\left(x^2-3x-5x+15\right)\left(x+2\right)\)
\(=\left[x\left(x-3\right)-5\left(x-3\right)\right]\left(x+2\right)\)
\(=\left(x-5\right)\left(x-3\right)\left(x+2\right)\)
Phân tích đa thức thành nhân tử:
4x4+81..Làm đúng mình tck
4x4+81
=(2x2)2+92+36x2-36x2
=(2x2+9)2-36x2
=(2x2+9-6x)(2x2+9+6x)
Phân tích đa thức thành nhân tử
a) 4x^16+81
b) x^4+2018x^2+2017x+2018
\(\text{a) }4x^{16}+81=4x^4+36x^2+81-36x^8\)
\(=\left(4x^{16}+36x^8+81\right)-36x^8\)
\(=\left[\left(2x^8\right)^2+2.2x^8.9+9^2\right]+\left(6x^4\right)^2\)
\(=\left(2x^8+9\right)^2-\left(6x^4\right)^2\)
\(=\left(2x^8+9-6x^4\right)\left(2x^8+9+6x^4\right)\)
\(\text{b) }x^4+2018x^2+2017x+2018\)
\(=x^4+2018x^2+2018x-x+2018\)
\(=\left(x^4-x\right)+\left(2018x^2+2018x+2018\right)\)
\(=x\left(x^3-1\right)-2018\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2018\left(x^2+x+1\right)\)
\(=\left(x^2-x\right)\left(x^2+x+1\right)+2018\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2018\right)\)
Phân tích đa thức thành nhân tử \(4x^4+81\)
= ( 2x2 )2 + 2 *2x2*9 + 92 - 36 x2
= ( 2x2 + 9 ) 2 - (6x)2
= (2x2 - 6x +9) (2x2 +6x + 9)
Phân tích đa thức thành nhân tử
4x^2 +81 , x^7 +x^2 +1
X^2 - 4x - 81 + 16
Phân tích đa thức thành nhân tử
Giúp em với
\(\left(x-4\right)^2-9^2=\left(x-13\right)\left(x+5\right)\)