Cho tam giác ABC vuông tại A đường cao AH .Kẻ HM vuông góc AB tại M,HN vuông góc AC tại N. Trên tia đối của tia MH lấy điểm D sao cho MD =MH,trên tia đối của tia NH lấy điểm E sao cho EN =NH. C/m tứ giác BCED là hình thang
Cho tam giác ABC vuông tại A, đường cao AH . Từ H kẻ HM vuông góc với AC tại M, trên tia đối của tia MH lấy E sao cho MH = ME. Kẻ HN vuông góc với AB tại N, trên tia đối của tia NH lấy điểm K sao cho NH=NK a) c/m AEK cân
Cho tam giác ABC kẻ AH vuông góc BC. kẻ HM vuông góc AB tại M, HN vuông góc AC tại N. Trên tia đối của MN lấy điểm D sao cho MD=MH , trên tia đối của NH lấy điểm E sao cho NE = NH .
a) tam giác DAE là tam giac gì ?
b) Gọi DE cắt AB tại I ,cắt AC tại K. Chứng minh rằng : HA là tia phân giác của góc IHK.
AI NHANH MÌNH K CHO !
cho tam giác ABC có góc B=750, góc C =600. Kẻ tia AH vuông góc BC tại H. Từ H kẻ tia HM vuông góc AB tại M.. HN vuông góc AC tại N. Trên tia đối của tia MH lấy E sao cho ME=MH. Trên tia đối tia NH lấy F sao cho NF=NH. tính góc EAF
Cho tam giác ABC vuông tại A, đường cao AH (H e BC), kẻ HM vuông góc AC (M e AC) và trên tia HM lấy điểm E sao cho MH=EM. Kẻ HN vuông góc AB (N e AB), trên tia HN lấy điểm D sao cho NH=AH. Chứng minh rằng
a) AD=AE=AH
b) 3 điểm D,A,E thẳng hàng và tam giác DHE vuông
c) MN// DE
d) BD//CE
a) Xét ΔDAN,ΔHANΔDAN,ΔHAN có :
HN=ND(gt)HN=ND(gt)
ANDˆ=ANHˆ(=90O)AND^=ANH^(=90O)
AN:ChungAN:Chung
=> ΔDAN=ΔHAN(c.g.c)ΔDAN=ΔHAN(c.g.c)
b) Xét ΔAMH,ΔAMEΔAMH,ΔAME có :
HM=ME(gt)HM=ME(gt)
AMHˆ=AMEˆ(=90o)AMH^=AME^(=90o)
AM:ChungAM:Chung
=> ΔAMH=ΔAME(c.g.c)ΔAMH=ΔAME(c.g.c)
Xét tứ giác ANHM có :
Nˆ=90O(HN⊥AB)N^=90O(HN⊥AB)
Aˆ=90O(ΔABC⊥A)A^=90O(ΔABC⊥A)
Mˆ=90O(HM⊥AC)M^=90O(HM⊥AC)
=> Tứ giác ANHM là hình chữ nhật
=> {NH=AMNA=HM{NH=AMNA=HM (tính chất hình chữ nhật)
Ta dễ dàng chứng minh được : ΔANH=ΔAMH(c.c.c)ΔANH=ΔAMH(c.c.c)
Mà : {ΔAND=ΔANHΔAHM=ΔAEM(cmt){ΔAND=ΔANHΔAHM=ΔAEM(cmt)
Suy ra : ΔAND=ΔAMEΔAND=ΔAME
=> DA=AEDA=AE(2 cạnh tương ứng) (*)
c) Từ (*) => A là trung điểm của DE
Do đó : D,A,E thẳng hàng (đpcm)
Cho tam giác ABC vuông tại A có H là trung điểm của BC. Kẻ HM vuông góc với AB tại M, HN vuông góc với AC tại N. a) Chứng minh: Tứ giác AMHN là hình chữ nhật?
b) Trên tia đối của tia MH lấy điểm P sao cho M là trung điểm của PH. Tứ giác APBH là hình gì? Tam giác ABC cần có điều kiện gì để tứ giác APBH là hình vuông?
c) Lấy I sao cho H là trung điểm của IM. Hạ MK vuông góc BC tại K. Chứng minh: AK vuông góc KI?
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
Do đó: AMHN là hình chữ nhật
b: Xét ΔABC có
H là trung điểm của BC
HN//AB
Do đó: N là trung điểm của AC
Xét ΔABC có
H là trung điểm của BC
HM//AC
Do đó: M là trung điểm của AB
Xét tứ giác AHBP có
M là trung điểm chung của AB và HP
=>AHBP là hình bình hành
Hình bình hành AHBP có AB\(\perp\)HP
nên AHBP là hình thoi
Để AHBP là hình vuông thì \(\widehat{HBP}=90^0\)
AHBP là hình thoi nên BA là phân giác của góc HBP
=>\(\widehat{HBA}=\dfrac{1}{2}\cdot\widehat{HBP}=45^0\)
=>\(\widehat{ABC}=45^0\)
Cho tam giác ABC vuông góc tại đỉnh A, đường cao AH. Từ H kẻ HM vuông góc với AC và trên tia đối HM lấy điểm E sao cho MH=EM. Kẻ HN vuông góc với AB và trên tia đối của tia NH lấy điểm D sao cho NH=ND
a) Chứng minh 3 điểm D, A, E thẳng hàng
b) Chứng minh MN//DE
c) Chưng minh BD//CE
d) Chưng minh tam giác DHE là tam giác đều
P/s Giải nhanh giùm vs đg gấp
a: Xét ΔAHD có
AN là đường cao
AN là đường trung tuyến
Do đó:ΔAHD cân tại A
mà AB là đường trung tuyến
nên AB là tia phân giác của góc HAD(1)
Xét ΔAHE có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHE cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAE(2)
Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot90^0=180^0\)
hay D,A,E thẳng hàng
b: Xét ΔHED có
M là trung điểm của HE
N là trung điểm của HD
Do đó: MN là đường trung bình
=>MN//ED
d: Xét ΔDHE có
HA là đường trung tuyến
HA=DE/2
Do đó:ΔDHE vuông tại H
Cho tam giác ABC vuông tại đỉnh A, đường cao AH. Từ H kẻ HM vuông góc với AC (M thuộc AC) và trên tia HM lấy điểm E sao cho MH=EM. Kẻ HN vuông góc với AB (N thuộc AB) và trên tia HN lấy điểm D sao cho NH=DN
a) Cm D,A,E thẳng hàng
b) Cm MN//DE
c) Cm BD//CE
d) Cm AD=AE=AH. Suy ra tam giác DHE là tam giác vuông
cho tam giác ABC cân tại A .Qua A kẻ đường thẳng vuông góc với BC gọi là AH. Kẻ HM vuông góc AB ,HN vuông góc AC .
a, Chứng minh : HM = HN
b, Trên tia đối của NH lấy F sao cho NF = NH. Chứng minh: FC vuông góc AF
c , Qua H kẻ đường thẳng song song FC cắt AC tại I. Chứng minh : IF song song BC .
d, Trên tia đối của MH lấy E sao cho ME = MH. Chứng minh : E , I , F thẳng hàng
a) Do ABC là tam giác cân tại A nên AH là đường cao hay đồng thời là đường phân giác.
Xét tam giác vuông AMH và tam giác vuông ANH có:
Cạnh AH chung
\(\widehat{MAH}=\widehat{NAH}\)
\(\Rightarrow\Delta AMH=\Delta ANH\) (Cạnh huyền - góc nhọn)
\(\Rightarrow HM=HN.\)
b) Dễ dàng thấy ngay AC là đường trung trực của HF.
Khi đó thì AH = AF; CH = CF
Xét tam giác AHC và tam giác AFC có:
Cạnh AC chung
AH - AF
CH = CF
\(\Rightarrow\Delta AHC=\Delta AFC\left(c-c-c\right)\)
\(\Rightarrow\widehat{AFC}=\widehat{AHC}=90^o\Rightarrow AF\perp CF.\)
c) Ta thấy ngay \(\Delta HIN=\Delta FCN\left(g-c-g\right)\)
\(\Rightarrow IN=CN\)
Xét tam giác vuông INF và tam giác vuông CNH có:
HN = FN
IN = CN
\(\Rightarrow\Delta INF=\Delta CNH\) (Hai cạnh góc vuông)
\(\Rightarrow\widehat{IFN}=\widehat{CHN}\)
Mà chúng lại ở vị trí so le trong nên IF // BC.
d) Chứng minh tương tự câu c, ta có IE // BC
Vậy thì qua I có hai tia IE và IF cùng song song với BC nên chúng trùng nhau.
Vậy I, E, F thẳng hàng.
Cho tam giác ABC vuông tại a, Kẻ AH vuông góc BC. Từ H kẻ HM vuông góc AC, trên tia HM lấy E sao cho MH=EM. Kẻ HN vuông góc AB, trên tia HN lấy điểm D sao cho NH=DN
CMR: a) 3 điểm D;E;A thẳng hàng
b) MN//DE
c)tam giác DHE vuông tại H